Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (1): 237-246    DOI: 10.6046/gtzyyg.2019.01.31
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
龙门山断裂带北东段活动断裂的遥感影像解译及构造活动性分析
谢小平1, 白毛伟1(), 陈芝聪1, 柳伟波2, 席书娜3
1.曲阜师范大学地理与旅游学院,日照 276826
2.四川省地质矿产勘查开发局化探队,德阳 618000
3.四川省煤田地质局一三七队地质遗迹研究院,成都 610000
Remote sensing image interpretation and tectonic activity study of the active faults along the northeastern segment of the Longmenshan fault
Xiaoping XIE1, Maowei BAI1(), Zhicong CHEN1, Weibo LIU2, Shuna XI3
1.School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
2.Geochemical Exploration Party, Sichuan Bureau of Exploration and Development of Geology and Minerals Resources, Deyang 618000, China
3.Institute of Geological Relics, No. 137 Geological Party, Sichuan Coalfield Geological Bureau, Chengdu 610000, China
全文: PDF(10463 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

活动断裂活动性的强弱显著影响着人们的生命、财产安全。在系统总结活动断裂的遥感影像解译标志的基础上,综合利用Landsat ETM+影像、ASTER GDEM数字高程模型及Google Earth影像等多种数据资料,结合前人研究成果,获得研究区活动断裂的空间展布情况: 平武—青川断裂、北川—映秀断裂北东段、茶坝—林庵寺断裂和广元—江油断裂在空间展布上大致平行。通过对错断水系错位量的测量、夸张三维地貌的对比、历史地震震级对比和地形起伏度等比较分析,得出了断裂的性质和活动性强弱情况: 平武—青川断裂、北川—映秀断裂北东段、茶坝—林庵寺断裂和广元—江油断裂为研究区内主要的活动断裂,均为右旋走滑兼逆冲断裂; 平武—青川断裂的活动性最强,北川—映秀断裂北东段及茶坝—林庵寺断裂的活动性次之,广元—江油断裂的活动性最弱。龙门山断裂带北东段主要活动断裂的活动性由北西向南东减弱。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢小平
白毛伟
陈芝聪
柳伟波
席书娜
关键词 遥感解译活动断裂带断裂活动性龙门山断裂带北东段    
Abstract

In this paper, the authors systematically summarized the remote sensing interpretation signs of active faults and, by using Landsat ETM+, ASTER GDEM and Google Earth image data in combination with previous research results, obtained the spatial distribution of active faults in the study area and analyzed in detail fault properties and activities. It is shown that Pingwu — Qingchuan fault, the northeastern segment of Beichuan — Yingxiu fault, Chaba — Linansi fault and Guangyuan — Jiangyou fault are roughly parallel in spatial distribution. On the basis of the measurement of offset streams dislocation, the contrast of exaggerated 3D landforms, the historical earthquakes analysis and the analysis of topographic relief extent of land surface, the authors have reached the conclusion that Pingwu — Qingchuan fault, the northeastern segment of Beichuan — Yingxiu fault, Chaba — Linansi fault and Guangyuan — Jiangyou fault are main active faults in the zone, which are all right-lateral strike-slip and thrust faults. Among them, the activity of the Pingwu — Qingchuan fault is strongest, the activity of the the northeastern segment of Beichuan — Yingxiu fault and Chaba — Linansi fault is weaker than that of Pingwu — Qingchuan fault, and the activity of the Guangyuan — Jiangyou fault is the weakest.

Key wordsremote sensing interpretation    active fault zone    fault activity    the northeastern segment of the Longmenshan fault zone
收稿日期: 2017-09-06      出版日期: 2019-03-14
:  TP79  
基金资助:国家自然科学基金项目"龙门山地区涪江上游晚新生代水系演化与新构造响应研究"(41072164)
通讯作者: 白毛伟
作者简介: 谢小平(1966-),男,博士后,教授,主要从事沉积学研究。Email: xp.xie@263.net。
引用本文:   
谢小平, 白毛伟, 陈芝聪, 柳伟波, 席书娜. 龙门山断裂带北东段活动断裂的遥感影像解译及构造活动性分析[J]. 国土资源遥感, 2019, 31(1): 237-246.
Xiaoping XIE, Maowei BAI, Zhicong CHEN, Weibo LIU, Shuna XI. Remote sensing image interpretation and tectonic activity study of the active faults along the northeastern segment of the Longmenshan fault. Remote Sensing for Land & Resources, 2019, 31(1): 237-246.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.01.31      或      https://www.gtzyyg.com/CN/Y2019/V31/I1/237
Fig.1  龙门山北东段Google Earth遥感影像
Fig.2-1  平武—青川断裂遥感影像解译标志
Fig.2-2  平武—青川断裂遥感影像解译标志
Fig.3  北川—映秀断裂遥感影像解译标志
Fig.4  茶坝—林庵寺断裂遥感影像解译标志
Fig.5  广元—江油活动断裂的遥感影像解译标志
Fig.6  龙门山北东段主要活动断裂带内水系错动距离
Fig.7-1  龙门山北东段主要活动断裂带内断层三角面三维可视化模拟
Fig.7-2  龙门山北东段主要活动断裂带内断层三角面三维可视化模拟
Fig.8  龙门山北东段活动断层解译结果与盆地位置
(ETM+ B7(R),B4(G),B3(B)假彩色波段组合)
Fig.9  龙门山北东段活动断裂与地震空间展布的一致性
(ETM+ B7(R),B4(G),B3(B)假彩色波段组合)
指标 窗口大小(i×i)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
窗口边长/m 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510
最大地形起伏度/m 481 983 1 551 1 909 2 015 2 015 2 018 2 021 2 024 2 036 2 038 2 038 2 012 2 071 2 071 2 068 2 071
Tab.1  窗口边长与最大地形起伏度关系
Fig.10  地形起伏度曲线
Fig.11  龙门山北东段地形起伏度
[1] 吴中海, 张岳桥, 胡道功 . 新构造、活动构造与地震地质[J]. 地质通报, 2014,33(4):391-402.
doi: 10.3969/j.issn.1671-2552.2014.04.001
Wu Z H, Zhang Y Q, Hu D G . Neotectonics,active tectonics and earthquake geology[J]. Geological Bulletin of China, 2014,33(4):391-402.
[2] Molnar P, Tapponnier P . Cenozoic tectonics of Asia:Effects of a continental collision[J]. Science, 1975,189(4201):419-426.
doi: 10.1126/science.189.4201.419 pmid: 17781869
[3] Taylor M, Yin A . Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution,contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 2009,5(3):199-214.
doi: 10.1130/GES00217.1
[4] 张培震, 邓起东, 张竹琪 , 等. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学(地球科学), 2013,43(10):1607-1620.
Zhang P Z, Deng Q D, Zhang Z Q , et al. Active faults,earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica Terrae, 2013,43(10):1607-1620.
[5] Chen Z H, Burchfiel B C, Liu Y , et al. Global positioning system measurements from eastern Tibet and their implications for India/Eurasia implications for India/Eurasia intercontinental deformation[J]. Journal of Geophysical Research(Solid Earth), 2000,105(b7):16215-16227.
[6] Fu B H, Awata Y . Displacement and timing of left-lateral faulting in the Kunlun Fault Zone, northern Tibet,inferred from geologic and geomorphic features[J]. Journal of Asian Earth Sciences, 2007,29(2):253-265.
doi: 10.1016/j.jseaes.2006.03.004
[7] 李勇, 周荣军 , Densmore A L, 等. 青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志[J]. 第四纪研究, 2006,26(1):40-51.
doi: 10.3321/j.issn:1001-7410.2006.01.006
Li Y, Zhou R J, Densmore A L , et al. Geomorphic evidence for the late cenozoic strike-slipping and thrusting in Longmen mountain at the eastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 2006,26(1):40-51.
[8] 李勇, 周荣军 , Densmore A L, 等. 青藏高原东缘龙门山晚新生代走滑挤压作用的沉积响应[J]. 沉积学报, 2006,24(2):153-164.
doi: 10.3969/j.issn.1000-0550.2006.02.001
Li Y, Zhou R J, Densmore A L , et al. Sedimentary responses to late Cenozoic thrusting and strike-slipping of Longmen Shan along eastern margin of Tibetan Plateau[J]. Acta Sedimentologica Sinica, 2006,24(2):153-164.
[9] 付碧宏, 时丕龙, 张之武 . 四川汶川MS8.0大地震地表破裂带的遥感影像解析[J]. 地质学报, 2008,82(12):1679-1687.
doi: 10.3321/j.issn:0001-5717.2008.12.005
Fu B H, Shi P L, Zhang Z W . Spatial characteristics of the surface rupture produced by the MS8.0 Wenchuan earthquake using high-resolution remote sensing imagery[J]. Acta Geologica Sinica, 2008,82(12):1679-1687.
[10] 路静, 张景发, 姜文亮 , 等. 龙门山断裂带北段活动特征的遥感地质解译研究[J]. 地震, 2009,29(b10):164-172.
doi: 10.3969/j.issn.1000-3274.2009.z1.022
Lu J, Zhang J F, Jian W L , et al. Interpretation of active tectonics along the northern segment of the Longmenshan fault zone from RS images[J]. Earthquake, 2009,29(b10):164-172.
[11] 李勇, 黎兵, 周荣军 , 等. 剥蚀-沉积体系中剥蚀量与沉积通量的定量对比研究——以岷江流域为例[J]. 地质学报, 2007,81(3):332-343.
doi: 10.3321/j.issn:0001-5717.2007.03.006
Li Y, Li B, Zhou R J , et al. The quantitative correlation between denudation volume and flux in the denudation-accumulation system:Examples from Minjiang River drainage system[J]. Acta Geologica Sinica, 2007,81(3):332-343.
[12] 杨农, 张岳桥 . 龙门山断裂活动和川西高原隆升历史的裂变径迹测年[J]. 地质力学学报, 2010,16(4):359-371.
doi: 10.3969/j.issn.1006-6616.2010.04.004
Yang N, Zhang Y Q . Tission-track dating for activity of the Longmenshan fault zone and uplifting of the western Sichuan Plateau[J]. Journal of Geomechanics, 2010,16(4):359-371.
[13] 侯增谦, 吕庆田, 王安建 , 等. 初论陆-陆碰撞与成矿作用——以青藏高原造山带为例[J]. 矿床地质, 2003,22(4):319-333.
doi: 10.3969/j.issn.0258-7106.2003.04.001
Hou Z Q, Lyu Q T, Wang A J , et al. Continental collision and related metallogeny:A case study of mineralization in Tibetan orogen[J]. Mineral Deposits, 2003,22(4):319-333.
[14] 李勇, 孙爱珍 . 龙门山造山带构造地层学研究[J]. 地层学杂志, 2000,24(3):201-206.
doi: 10.3969/j.issn.0253-4959.2000.03.006
Li Y, Sun A Z . Tectostratigraphy of Longmenshan orogen[J]. Journal of Stratigrephy, 2000,24(3):201-206.
[15] 高名修 . 晚新生代地壳构造运动研究[J]. 地质力学学报, 2008,14(4):295-319.
doi: 10.3969/j.issn.1006-6616.2008.04.001
Gao M X . Study on late Cenozoic crustal tectonism[J]. Journal of Geomechanics, 2008,14(4):295-319.
[16] 李玶, 汪良谋 . 云南川西地区地震地质基本特征的探讨[J]. 地质科学, 1975,10(4):308-326.
Li P, Wang L M . Exploration of the seismo-geological features of the Yunnan-West Sichuan Region[J]. Scientia Geological Sinica, 1975,10(4):308-326.
[17] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology, 1982,10(12):611-616.
doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
[18] 付碧宏, 时丕龙, 王萍 , 等. 2008年汶川地震断层北川段的几何学与运动学特征及地震地质灾害效应[J]. 地球物理学报, 2009,52(2):485-495.
doi:
Fu B H, Shi P L, Wang P , et al. Geometry and kinematics of the 2008 Wenchuan earthquake surface ruptures around the Qushan Town of Beichuan County,Sichuan:Implications for mitigation of seismic and geologic disasters[J]. Chinese Journal of Geophysics, 2009,52(2):485-495.
[19] Fu B H, Shi P L, Guo H D , et al. Surface deformation related to the 2008 Wenchuan earthquake,and mountain building of the Longmen Shan,eastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2011,40(4):805-824.
doi: 10.1016/j.jseaes.2010.11.011
[20] 李智武, 刘树根, 陈洪德 , 等. 龙门山冲断带分段-分带性构造格局及其差异变形特征[J]. 成都理工大学学报(自然科学版), 2008,35(4):440-454.
doi: 10.3969/j.issn.1671-9727.2008.04.014
Li Z W, Liu S G, Chen H D , et al. Structural segmentation and zonation and differential deformation across and along the Lomgmen thrust belt,West Sichuan,China[J]. Journal of Chengdu University of Technology(Science and Technology Edition), 2008,35(4):440-454.
[21] 金文正, 汤良杰, 杨克明 , 等. 川西龙门山褶皱冲断带分带性变形特征[J]. 地质学报, 2007,81(8):1072-1080.
doi: 10.3321/j.issn:0001-5717.2007.08.007
Jin W Z, Tang L J, Yang K M , et al. Deformation and zonation of the Longmenshan fold and thrust zone in the Western Sichuan Basin[J]. Acta Geologica Sinica, 2007,81(8):1072-1080.
[22] Liu S F, Qian T, Li W P , et al. Oblique closure of the northeastern Paleo-Tethys in central China[J]. Tectonics, 2015,34(3):413-434.
doi: 10.1002/2014TC003784
[23] 贾营营, 付碧宏, 王岩 , 等. 青藏高原东缘龙门山断裂带晚新生代构造地貌生长及水系响应[J]. 第四纪研究, 2010,30(4):825-836.
doi: 10.3969/j.issn.1001-7410.2010.04.17
Jia Y Y, Fu B H, Wang Y , et al. Late Cenozoic tectono-geomorphic growth and drainage response in the Longmen Shan fault zone,east margin of Tibet[J]. Quaternary Science, 2010,30(4):825-836.
[24] 李勇, 周荣军 , Densmore A L, 等. 青藏高原东缘大陆动力学过程与地质响应[M]. 北京: 地质出版社, 2006.
Li Y, Zhou R J, Densmore A L , et al. The Response of Geological and Progress of Continental Dynamics of the Eastern Margin Tibetan Plateau[M]. Beijing: Geological Press, 2006.
[25] Densemore A L, Ellis M, Li Y , et al. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J]. Tectonics, 2007, 26(4):TC4005,1-17.
doi: 10.1029/2006TC001987
[26] 白毛伟, 谢小平, 陈芝聪 , 等. 龙门山北东段山前涪江第四纪冲洪积扇地貌演化及其构造响应[J]. 沉积学报, 2017,35(1):85-92.
doi: 10.14027/j.cnki.cjxb.2017.01.009
Bai M W, Xie X P, Chen Z C , et al. Geomorphological evolution of the Quaternary alluvial fans and its response to tectonic activity along the Fujiang River,northeastern Longmen Shan[J]. Acta Sedimentologica Sinica, 2017,35(1):85-92.
[27] 刘振东, 涂汉明 . 中国地势起伏度统计单元的初步研究[J]. 热带地理, 1989,9(1):31-38.
Liu Z D, Tu H M . Study on statistical unit of relief amplitude in China[J]. Tropical Geography, 1989,9(1):31-38.
[28] 涂汉明, 刘振东 . 中国地势起伏度最佳统计单元的求证[J]. 湖北大学学报(自然科学版), 1990,12(3):266-271.
Tu H M, Liu Z D . Demonstrating on optimum statistic unit of relief amplitude in China[J]. Journal of Hubei University(Nature Science), 1990,12(3):266-271.
[29] 陈立春, 陈杰, 刘进峰 , 等. 龙门山前山断裂北段晚第四纪活动性研究[J]. 地震地质, 2008,30(3):710-722.
doi: 10.3969/j.issn.0253-4967.2008.03.010
Chen L C, Chen J, Liu J F , et al. Investigation of late Quaternary activity along the northern range front fault,Longmenshan[J]. Seismology and Geology, 2008,30(3):710-722.
[1] 刘志中, 宋英旭, 叶润青. 渝东北2014年“8·31”暴雨诱发滑坡遥感解译与分析[J]. 自然资源遥感, 2021, 33(4): 192-199.
[2] 随欣欣, 眭素文. 基于MapGIS和ArcGIS的遥感解译成果图件数据库设计与实现[J]. 国土资源遥感, 2018, 30(4): 218-224.
[3] 随欣欣, 眭素文, 刘锟. 面向遥感业务应用的解译成果数据管理系统研究和构建[J]. 国土资源遥感, 2018, 30(3): 238-243.
[4] 王瑞军, 闫柏琨, 李名松, 董双发, 孙永彬, 汪冰. 甘肃红山地区重要控矿地质单元GF-1数据遥感解译与应用[J]. 国土资源遥感, 2018, 30(2): 162-170.
[5] 张策, 揭文辉, 付丽华, 魏本赞. 新疆新源县滑坡灾害遥感影像特征及分布规律[J]. 国土资源遥感, 2017, 29(s1): 81-84.
[6] 李海鹰. 国产高分辨率遥感数据在环境地质调查中的应用[J]. 国土资源遥感, 2017, 29(s1): 46-51.
[7] 王瑞军, 董双发, 孙永彬, 李婧玥. 基于高分一号卫星数据新疆索拉克地区控矿地质单元遥感解译与应用[J]. 国土资源遥感, 2017, 29(s1): 137-143.
[8] 李晓民, 张焜, 李冬玲, 李得林, 李宗仁, 张兴. 青藏高原札达地区多年冻土遥感技术圈定方法与应用[J]. 国土资源遥感, 2017, 29(1): 57-64.
[9] 李晓民, 燕云鹏, 刘刚, 李冬玲, 张兴, 庄永成. ZY-1 02C星数据在西藏札达地区水文地质调查中的应用[J]. 国土资源遥感, 2016, 28(4): 141-148.
[10] 高孟绪, 王卷乐, 柏中强, 祝俊祥. 基于RapidEye影像的农村居民地遥感监测——以江西省泰和县为例[J]. 国土资源遥感, 2016, 28(1): 130-135.
[11] 宿渊源, 张景发, 何仲太, 姜文亮, 蒋洪波, 李强. 资源卫星三号DEM数据在活动构造定量研究中的应用评价[J]. 国土资源遥感, 2015, 27(4): 122-130.
[12] 刘德长, 童勤龙, 林子喻, 杨国防. 欧洲大陆遥感地质解译、诠释与矿产勘查战略选区[J]. 国土资源遥感, 2015, 27(3): 136-143.
[13] 胥兵, 方臣. ZY-102C星图像与ETM+图像融合方法及效果评价[J]. 国土资源遥感, 2014, 26(3): 80-85.
[14] 徐岳仁, 何宏林, 陈立泽, 申旭辉. 基于CBERS数据的福建南平地质灾害动态遥感解译[J]. 国土资源遥感, 2014, 26(3): 153-159.
[15] 张明洋, 马维峰, 唐湘丹, 李仙伟. 地质灾害三维遥感解译成果的自动制图方法[J]. 国土资源遥感, 2013, 25(2): 164-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发