Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (1): 255-263    DOI: 10.6046/gtzyyg.2019.01.33
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
月球哥白尼纪次级坑的形态特征及其空间分布
张珂1,2, 刘建忠1,2(), 程维明2,3
1.中国科学院地球化学研究所月球与行星科学研究中心,贵阳 550002
2.中国科学院大学,北京 100049
3.中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101
Morphological features and spatial distribution of the lunar Copernican secondary craters
Ke ZHANG1,2, Jianzhong LIU1,2(), Weiming CHENG2,3
1.Lunar and Planetary Science Research Center, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
全文: PDF(5571 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

月球次级坑是月球上的一种地质特征,易与初级坑相混淆,对月表定年影响大,同时对主撞击坑的撞击方向有一定的指示意义,因此识别和筛选出次级坑是一项重要的工作。综合考虑撞击坑空间分布位置和直径关系,选取哥白尼纪5个典型撞击坑为研究对象,基于遥感影像和地形数据,通过总结相关学者对特定形态指标与次级坑定量关系的研究,构建4个形态指标(不规则度、椭圆度、深径比、坑缘高度与直径比)及其参数范围,进行次级坑的智能化识别、提取与空间分布研究。最终识别出次级坑总数量为17 811个,在此基础上构建了包含位置、大小、形状、距离和方向5大类的数据库; 并研究了距主坑边缘不同距离范围内次级坑的规模和空间分布特征; 提出了基于次级坑主轴方向判定撞击坑入射方向的新方法。研究结果表明: ①在规模大小上,月海次级坑直径大小主要集中在初级坑直径的(2.7±0.11)%以下; 月陆次级坑直径大小主要集中在初级坑直径的(3±0.3)%以下; 在空间分布上,月海与月陆次级坑分布规律相一致,次级坑数量占总次级坑数量的90%时,其分布距离是最大分布距离的(57±7)%; ②Tycho撞击坑的入射方向为W-E方向,Copernicus撞击坑和Kepler撞击坑的入射方向为SE-NW方向,Aristarchus撞击坑和Jackson撞击坑的入射方向为NW-SE方向。这些认识将对更准确地开展撞击坑撞击方向的研究提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张珂
刘建忠
程维明
关键词 次级坑哥白尼纪形态指标次级坑数据库空间分析撞击方向    
Abstract

Lunar secondary crater, a kind of geological feature that is easily confused with the primary craters on the Moon, can introduce significant errors in lunar dating. However, it can be used to determine the impact direction of the primary crater, so it is important to identify secondary craters. In this paper, based on remote sensing data and topography data, comprehensive consideration of the spatial location and diameter of the lunar primary crater, the authors selected five typical Copernican primary craters to study the quantitative morphological indices so as to characterize their secondary craters, including depth-diameter ratio, rim height-diameter ratio, irregularity, and ellipticity. On such a basis, the intelligent identification, extraction and spatial distribution of secondary craters were studied. As a result, a total of 17 811 secondary craters were detected, from which a geodatabase was established that included five categories according to location, size, morphological indices, distance, and impact direction of secondary craters. The scale and distribution characteristics of secondary craters were studied based on the distance range from primary crater edge. A new method based on secondary crater major axis was developed. Some conclusions have been reached: ① As for craters size, the lunar mare secondary crater diameter is (2.7±0.11)% of its primary crater diameter, the lunar highland secondary crater diameter is (3±0.3)% of its primary crater diameter. The spatial distribution law is consistent between lunar highland and lunar mare. The secondary distribution distance is (57±7)% of the maximum distribution distance. ②The impact direction of the Tycho crater is W-E. The impact directions of the Copernicus crater and the Kepler crater are SE-NW. The impact directions of the Aristarchus crater and the Jackson crater are NW-SE. This study will be helpful for more accurate study of crater impact direction.

Key wordssecondary crater    Copernican    morphology index    secondary crater geodatabase    spatial distribution    impact direction
收稿日期: 2017-09-06      出版日期: 2019-03-14
:  TP79P691  
基金资助:国家自然科学基金项目"全月球形貌类型划分方法研究"(41571388);国家科技基础性工作专项项目"月球数字地质图编研"(2015FY210500);中国科学院B类先导科技专项培育项目课题(XDPB11-3)
通讯作者: 刘建忠
作者简介: 张珂(1991-),女,硕士研究生,主要从事行星遥感形貌科学方面的研究。Email: zhangke415@mails.ucas.ac.cn。
引用本文:   
张珂, 刘建忠, 程维明. 月球哥白尼纪次级坑的形态特征及其空间分布[J]. 国土资源遥感, 2019, 31(1): 255-263.
Ke ZHANG, Jianzhong LIU, Weiming CHENG. Morphological features and spatial distribution of the lunar Copernican secondary craters. Remote Sensing for Land & Resources, 2019, 31(1): 255-263.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.01.33      或      https://www.gtzyyg.com/CN/Y2019/V31/I1/255
参数 Copernicus撞击坑 Tycho撞击坑 Jackson撞击坑 Aristarchus撞击坑 Kepler撞击坑
经度 20°W 11.2°W 163.1°W 47.4°W 38°W
纬度 9.7°N 43.3°S 22.4°N 23.7°N 8.1°N
年代/Ma 800±40 109±4 80150 450 625950
直径/km 93 86 71 40 32
空间位置 位于风暴洋的中东部,雨海的南边,靠近月球赤道地区 位于月球正面南纬45°S的南部山地 位于月球背面的北半球 位于风暴洋的中部,月球正面的中低纬度地区 位于风暴洋和岛海之间,月球正面的北东侧
Tab.1  哥白尼纪5个典型撞击坑参数
Fig.1  哥白尼纪5个典型撞击坑的空间位置及其次级坑分布界限范围
指标参数 用途 公式
不规则度(Γ) 分析坑缘不规则的程度 Γ=P2πA 
椭圆度(ei) 坑缘的延展程度 ei=π(L/2)2A
深径比(t) 分析次级坑的深浅程度 t=HD
坑缘高度与直径比(y) 撞击坑隆起高度 y=hD
Tab.2  次级坑形态指标参数
指标参数 研究学者 范围 本文界定范围
不规则度 Zhou 等[24] 1.041.30
Γ≥1.02
Calef 等[25] 1.06±0.05
椭圆度 Guo 等[26] 01.20
ei≥1.20
Nagumo等[27] ≥1.20
深径比 Moutsoulas等[28] 0.120.15
Basilevsky等[29] 0.0250.130
0.07≤t<0.20
Grant等[30] 0.07
Pike[31] 0.1040.173±0.040
坑缘高度与直径比 Watters[32] 0.030.04
Pike[31] 0.020.04 0.02≤y≤0.04
Pike[33] 0.02
Tab.3  次级坑识别的指标参数特征值
Fig.2  5个典型哥白尼纪撞击坑次级坑界限范围内的次级坑分布
指标 属性类型 Copernicus次级坑 Tycho次级坑 Jackson次级坑 Aristarchus次级坑 Kepler次级坑
FID 1 1 1 1 1
位置 中心点经度 13.55°N 27.55°S 19.10°N 25.09°N 13.09°N
中心点纬度 29.54°W 22.65°W 166.85°W 41.67°W 35.90°W
大小 面积/km2 2.23 4.48 3.63 0.20 0.59
周长/km 5.74 7.84 7.10 1.67 2.82
直径/km 1.69 2.39 2.15 0.51 0.87
深度/m 275.0 252.0 274.5 73.5 67.0
边缘高度/m 53.40 67.35 59.04 12.16 22.32
主轴长度/km 2.10 3.15 2.63 0.67 1.03
副轴长度/km 1.60 2.16 2.11 0.46 0.76
形状 不规则度 1.080 1.045 1.050 1.042 1.040
椭圆度 1.56 1.74 1.50 1.69 1.42
深径比 0.166 0.105 0.130 0.140 0.080
坑缘高度与
直径比
0.031 0.028 0.027 0.024 0.260
距离 距主坑中心
距离/km
311.10 570.00 139.25 181.20 105.69
方向 主轴方向/° 66.72 -66.76 -25.78 38.03 -62.74
Tab.4  部分次级坑数据库属性信息
Fig.3  距离主坑边缘的不同半径与次级坑直径关系
Fig.4  不同次级坑直径、次级坑分布距离下与次级坑数量占比的关系
Fig.5  撞击坑体入射方向判断综合解译
[1] Arvidson R E, Chapman C, Moore H , et al. Standard techniques for presentation and analysis of crater size-frequency data[J]. Icarus, 1979,37(2):467-474.
doi: 10.1016/0019-1035(79)90009-5
[2] Anderson R B, Bell J F I . Geologic mapping and characterization of Gale crater and implications for its potential as a Mars science laboratory landing site[J]. International Journal of Mars Science and Exploration, 2010,5:76-128.
doi: 10.1555/mars.2010.0004
[3] Bierhaus E B, Chapman C R, Merline W J . Secondary craters on Europa and implications for cratered surfaces[J]. Nature, 2005,437:1125-1127.
doi: 10.1038/nature04069 pmid: 16237437
[4] Dundas C M, McEwen A S . Rays and secondary craters of Tycho[J]. Icarus, 2007,186(1):31-40.
doi: 10.1016/j.icarus.2006.08.011
[5] Hartmann W K, Neukum G . Cratering chronology and evolution of Mars[J]. Space Science Reviews, 2001,96(1-4):165-194.
doi: 10.1007/978-94-017-1035-0_6
[6] Kumar P S, Kumar A S, Keerthi V , et al. Chandrayaan-1 observation of distant secondary craters of Copernicus exhibiting central mound morphology:Evidence for low velocity clustered impacts on the Moon[J]. Planetary and Space Science, 2011,59(9):870-879.
doi: 10.1016/j.pss.2011.04.004
[7] McEwen A S, Bierhaus E B . The importance of secondary cratering to age constraints on planetary surfaces[J]. Annual Review of Earth and Planetary Sciences, 2006,34(1):535-567.
doi: 10.1146/annurev.earth.34.031405.125018
[8] Pike R J, Wilhelms D E. Secondary-impact craters on the Moon:Topographic form and geologic process[C]// Lunar and Planetary Science Conference. Houston, 1978,9:907-909.
[9] Robbins S J, Hynek B M . Distant secondary craters from Lyot crater,Mars,and implication for surface ages for surface ages of planetary bodies[J]. International Journal of Remote Sensing, 2011,27(8):1677-1690.
doi: 10.1080/01431160500406896
[10] Oberbeck V R, Morrison R H. The secondary crater Herringbone pattern[C]// Lunar and Planetary Science Conference.Texas, 1973,4:570-571.
[11] Oberbeck V R, Morrison R H . Laboratory simulation of the herringbone pattern associated with lunar secondary crater chains[J]. Moon, 1974,9(3-4):415-455.
doi: 10.1007/BF00562581
[12] Shoemaker E M. Preliminary analysis of the fine structure of the lunar surface in Mare Cognitum[C]// Hess W N, Menzel D H, O’Keefe J A. The Nature of the Lunar Surface. Baltimore: Johns Hopkins Press, 1965,2:33-77.
[13] Bart G D, Melosh H J . Using lunar boulders to distinguish primary from distant secondary impact craters[J]. Geophysical Research Letters, 2007,34(7):1-5.
doi: 10.1029/2007GL030402
[14] McEwen A S, Preblich B S, Turtle E P , et al. The rayed crater Zunil and interpretations of small impact craters on Mars[J]. Icarus, 2005,176(2):351-381.
doi: 10.1016/j.icarus.2005.02.009
[15] Wells K S, Campbell D B, Campbell B A , et al. Detection of small lunar secondary craters in circular polarization ratio Radar images[J]. Journal of Geophysical Research, 2010,115(e6):258-273.
doi: 10.1029/2009JE003491
[16] Honda C, Kinoshita T, Hirata N, et al. Detection abilities of secondary craters based on the clustering analysis and Voronoi diagram[C]// European Planetary Science Congress.Portugal, 2014,9:119.
[17] Boyed A K, Robinson M S, Sato H. Lunar reconnaissance orbiter wide angle camera photometry:An empirical solution[C]// 43rd Lunar and Planetary Science Conference.Texas, 2012,43:2795.
[18] Hartmann W K . Does crater "saturation equilibrium" occur in the solar system?[J]. Icarus, 1984,60(1):56-74.
doi: 10.1016/0019-1035(84)90138-6
[19] Hartmann W K, Berman D C, Betts B H . Landing site studies using high resolution MGS crater counts and Phobos-2 Termoskan data[J]. Second Mars Surveyor Landing Site Workshop, 1999: 55.
[20] Chapman C R, Mckinnon W B. Cratering of planetary satellites[M] // Burns J A, Matthews M S. Satellites.Tucson: University of Arizona Press, 1986: 492-580.
[21] Allen C C . Large lunar secondary craters:Size-range relationships[J]. Geophysical Research Letters, 1979,6(1):51-54.
doi: 10.1029/GL006i001p00051
[22] Melosh H J. Impact Cratering:A Geologic Process[M]. New York: Oxford University Press, 1989.
[23] Schultz P H, Singer J. A comparison of secondary craters on the Moon,Mercury,and Mars[C]// Lunar and Planetary Science Conference Proceedings.Texas, 1980,11:2243-2259.
[24] Zhou S Z, Xiao Z Y, Zeng Z X . Impact craters with circular and isolated secondary craters on the continuous secondaries facies on the Moon[J]. Journal of Earth Science, 2015,26(5):740-745.
doi: 10.1007/s12583-015-0579-y
[25] Calef III F J, Herrick R R, Sharpton V L . Geomorphic analysis of small rayed craters on Mars:Examining primary versus secondary impacts[J]. Journal of Geophysical Research, 2009,114(e10):538-549.
doi: 10.1029/2008JE003283
[26] Guo D J, Liu J Z, Head J W. Spatial distribution and geometrics of orientale secondary crater[C]// Lunar and Planetary Science Conference.Texas, 2017,2560.
[27] Nagumo K, Nakamura A M . Reconsideration of crater size-frequency distribution on the Moon:Effect of projectile population and secondary craters[J]. Advances in Space Research, 2001,28(8):1181-1186.
doi: 10.1016/S0273-1177(01)00488-4
[28] Moutsoulas M, Preka P . Morphological characteristics of lunar craters with moderate depth/diameter ratio.II-d/D between 0.12 and 0.15[J]. Moon and the Planets, 1981,25(1):51-66.
doi: 10.1007/BF00911808
[29] Basilevsky A T, Kozlova N A, Zavyalov I Y , et al. Morphometric studies of the Copernicus and Tycho secondary craters on the Moon:Dependence of crater degradation rate on crater size[J]. Planetary and Space Science, 2017: 1-10.
[30] Grant J A, Arvidson R E, Crumpler L S , et al. Crater gradation in Gusev crater and Meridiani Planum,Mars[J]. Journal of Geophysical Research Planets, 2006,111(e2):516-531.
doi: 10.1029/2005JE002465
[31] Pike R J . Crater dimensions from Apollo data and supplemental sources[J]. Moon, 1976,15(3-4):463-477.
doi: 10.1007/BF00562253
[32] Watters W A, Collins G S, Hundal C, et al. Dependence of secondary crater shape on impact velocity[C]// 79th Annual Meeting of the Meteoritical Society.Berlin, 2016,1921:6502.
[33] Pike R J . Geometric Interpretation of Lunar Craters[M]. Washington:Washington U.S.Government Printing Office, 1980.
[34] Schenk P M, Ridolfi F J . Morphology and scaling of ejecta deposits on Icy satellites[J]. Geophysical Research Letters, 2002,29(12):1-4.
doi: 10.1029/2001GL013512
[35] Bierhaus E B, Dones L, Alvarellos J L , et al. The role of ejecta in the small crater populations on the mid-sized saturnian satellites[J]. Icarus, 2011,218(1):602-621.
doi: 10.1016/j.icarus.2011.12.011
[36] Nyquist L E, Bogard D D, Shih C Y , et al. Ages and geologic histories of Martian meteorites[J]. Space Science Reviews, 2001,96(1-4):105-164.
doi: 10.1023/A:1011993105172
[37] Poelchau M H, Kenkmann T . Asymmetric signatures in simple craters as an indicator for an oblique impact direction[J]. Meteorisics and Planetary Science, 2010,43(12):2059-2072.
doi: 10.1111/j.1945-5100.2008.tb00661.x
[38] Tsikalas F . Mjølnir Crater as a Result of Oblique Impact:Asymmetry Evidence Constrains Impact Direction and Angle[M]. Springer Berlin Heidelberg, 2005: 285-306.
[39] Wallis D, Burchell M J, Cook A C , et al. Azimuthal impact directions from oblique impact crater morphology[J]. Monthly Notices of the Royal Astronomical Society, 2005,359(3):1137-1149.
doi: 10.1111/mnr.2005.359.issue-3
[40] Shkuratov Y, Kaydash V, Rohacheva L , et al. Comparison of lunar red spots including the crater copernicus[J]. Icarus, 2016,272:125-139.
doi: 10.1016/j.icarus.2016.02.034
[41] Hirata N, Haruyama J, Ohtake M, et al. Morphological analyses of Tycho crater with Kaguya data[C]// Lunar and Planetary Science Conference.Texas, 2009,1514.
[42] Hirata N, Haruyama J, Ohtake M, et al. Remote sensing study of a large lunar crater Jackson[C]// 41st Lunar and Planetary Science Conference.Texas, 2010,1533:1585.
[43] Mustard J F, Pieters C M, Isaacson P J , et al. Compositional diversity and geologic insights of the Aristarchus crater from Moon mineralogy mapper data[J]. Journal of Geophysical Research Planets, 2011,116(e6):0-12.
doi: 10.1029/2010JE003726
[44] Öhman T, Kring D A . Photogeologic analysis of impact melt-rich lithologies in Kepler crater that could be sampled by future missions[J]. Journal of Geophysical Research, 2012,117(e12):295-306.
doi: 10.1029/2011JE003918
[1] 李东, 唐诚, 邹涛, 侯西勇. 近海人工鱼礁水下物理状态探测与评估[J]. 自然资源遥感, 2022, 34(1): 27-33.
[2] 宋仁波, 朱瑜馨, 丁上珊, 贺巧宁, 王细元, 王月香. 基于GIS空间分析的任意多边形骨架线自动提取方法[J]. 国土资源遥感, 2020, 32(1): 51-59.
[3] 曾远文, 丁忆, 胡艳, 陈静, 段松江. 农村居民点空间布局及优化分析——以重庆市合川区狮滩镇聂家村为例[J]. 国土资源遥感, 2018, 30(3): 113-119.
[4] 张晓萍, 吕颖, 张华国, 李朝奎. 1990―2011年舟山群岛不透水面动态遥感分析[J]. 国土资源遥感, 2018, 30(2): 178-185.
[5] 郭丽琴, 赵志芳, 代启学, 梁明月, 付义勋, 陈百炼. 基于RS和GIS文山州石漠化时空演变特征及成因研究[J]. 国土资源遥感, 2017, 29(s1): 106-113.
[6] 程滔. 大数据时代遥感数据管理与服务模式探索[J]. 国土资源遥感, 2016, 28(4): 202-206.
[7] 陈应跃, 甘淑, 田禹东, 周曦冰. 山区土地评价的GIS空间分析建模研究[J]. 国土资源遥感, 2015, 27(2): 196-200.
[8] 李学渊, 赵博, 陈时磊, 赵颖旺, 边凯. 基于遥感与GIS的矿山地质环境时空演变分析——以东胜矿区为例[J]. 国土资源遥感, 2015, 27(2): 167-173.
[9] 姬翠翠, 李晓松, 曾源, 闫娜娜, 武文波, 吴炳方.
基于遥感和GIS的宣化县水土流失定量空间特征分析
[J]. 国土资源遥感, 2010, 22(2): 107-112.
[10] 李晓琴, 田垄, 余珍风. 黄河流域水土流失遥感监测[J]. 国土资源遥感, 2009, 21(4): 57-61.
[11] 林先成, 杨武年. 基于栅格数据空间分析的城镇土地定级研究[J]. 国土资源遥感, 2008, 20(2): 91-101.
[12] 王治华. 中国滑坡遥感及新进展[J]. 国土资源遥感, 2007, 19(4): 7-10.
[13] 庞治国, 李纪人, 李取生. 吉林西部盐碱化土地空间变化及防治措施[J]. 国土资源遥感, 2004, 16(2): 56-60.
[14] 北京时空港公司 . GeoMedia(INTERGRAPH)——为国土提供领先解决方案[J]. 国土资源遥感, 2002, 14(2): 70-70.
[15] 刘湘南, 许红梅 . 基于RS、GIS的松嫩沙地土地利用变化研究——以吉林省前郭县为例[J]. 国土资源遥感, 2001, 13(1): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发