Please wait a minute...
国土资源遥感  2019, Vol. 31 Issue (2): 1-9    DOI: 10.6046/gtzyyg.2019.02.01
  综述 本期目录 | 过刊浏览 | 高级检索 |
面向地块的农作物遥感分类研究进展
韩衍欣1,2,蒙继华1()
1.中国科学院遥感与数字地球研究所数字地球重点实验室,北京 100101
2.中国科学院大学,北京 100049
A review of per-field crop classification using remote sensing
Yanxin HAN1,2,Jihua MENG1()
1.Key Laboratory for Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(1056 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

农作物遥感分类是农作物面积监测的核心问题,对于进一步开展农作物长势、产量等专题监测具有重要意义。与同质像元聚类得到的对象相比,地块数据包含了更为精确的位置和面积信息,被越来越多地应用于农作物遥感分类。首先,系统总结了面向地块农作物遥感分类在理论、方法和实践中取得的进展; 然后,分析了该方法目前存在的问题; 最后,对未来的发展趋势进行了展望。研究认为,数字化和影像分割是获取地块数据的主要途径,陆续发布的全国地块数据集也给面向地块农作物遥感分类带来了新的契机; 将面向地块的农作物遥感分类策略分为考虑地块整体特征和以像元为基础2种,并总结了遥感分类特征和分类方法取得的进展; 在未来一段时间,多源数据的应用、地块边界检测技术的发展、分类特征的挖掘以及遥感分类运行化能力的提高将是面向地块农作物遥感分类的重要研究内容。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩衍欣
蒙继华
关键词 面向地块农作物遥感分类    
Abstract

Crop classification using remote sensing is the key to monitoring crop planting acreage and has great significance in further thematic monitoring. As field contains more accurate information of location and acreage than object which is the result of clustering similar pixels, it has been applied to crop classification using remote sensing increasingly. This paper summarizes the progress of per-field crop classification using remote sensing systematically, including its theories, methods and applications. Furthermore, a series of problems are analyzed and future study directions are viewed. Studies show that digitalization and image segmentation are the main approach to obtaining field boundary and more nationwide field database and bringing per-field classification a new opportunity. The strategies of per-field classification can be divided into two categories:using field features as input for the classifier and assigning field class based on per-pixel classification. The progress of features and classifiers in classification with remote sensing data are summarized further. It is indicated that combined application of multi-source data, development of field boundary detection, new features selection and improving implementation capacity of remote sensing image classification will be the crucial issues in per-field classification using remote sensing.

Key wordsper-field    crop    remote sensing    classification
收稿日期: 2018-01-24      出版日期: 2019-05-23
ZTFLH:  TP79  
基金资助:高分辨率对地观测系统重大专项项目“GF-6卫星宽幅相机作物类型精细识别与制图技术”(09-Y20A05-9001-17/18);“GF-6卫星宽幅相机影像植被参数定量反演技术”(30-Y20A03-9003-17/18);国家自然科学基金面上项目“基于作物模型与遥感数据同化的农田土壤速效养分反演方法研究”共同资助(41871261)
通讯作者: 蒙继华     E-mail: mengjh@radi.ac.cn
作者简介: 韩衍欣(1994-),男,硕士研究生,主要从事农作物遥感分类及长势监测方面的研究。Email: hanyx@radi.ac.cn。
引用本文:   
韩衍欣,蒙继华. 面向地块的农作物遥感分类研究进展[J]. 国土资源遥感, 2019, 31(2): 1-9.
Yanxin HAN,Jihua MENG. A review of per-field crop classification using remote sensing. Remote Sensing for Land & Resources, 2019, 31(2): 1-9.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.02.01      或      http://www.gtzyyg.com/CN/Y2019/V31/I2/1
Fig.1  农作物反射光谱特征
[1] 蒙继华, 吴炳方, 杜鑫 , 等. 遥感在精准农业中的应用进展及展望[J]. 国土资源遥感, 2011,23(3):1-7.doi: 10.6046/gtzyyg.2011.03.01.
doi: 10.6046/gtzyyg.2011.03.01
Meng J H, Wu B F, Du X , et al. A review and outlook of applying remote sensing to precision agriculture[J]. Remote Sensing for Land and Resources, 2011,23(3):1-7.doi: 10.6046/gtzyyg.2011.03.01.
doi: 10.6046/gtzyyg.2011.03.01
[2] 赵春江 . 农业遥感研究与应用进展[J]. 农业机械学报, 2014,45(12):277-293.
doi: 10.6041/j.issn.1000-1298.2014.12.041
Zhao C J . Advances of research and application in remote sensing for agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(12):277-293.
doi: 10.6041/j.issn.1000-1298.2014.12.041
[3] 陈水森, 柳钦火, 陈良富 , 等. 粮食作物播种面积遥感监测研究进展[J]. 农业工程学报, 2005,21(6):166-171.
doi: 10.3321/j.issn:1002-6819.2005.06.037
Chen S S, Liu Q H, Chen L F , et al. Review of research advances in remote sensing monitoring of grain crop area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005,21(6):166-171.
doi: 10.3321/j.issn:1002-6819.2005.06.037
[4] 宋茜, 周清波, 吴文斌 , 等. 农作物遥感识别中的多源数据融合研究进展[J]. 中国农业科学, 2015,48(6):1122-1135.
doi: 10.3864/j.issn.0578-1752.2015.06.09
Song Q, Zhou Q B, Wu W B , et al. Recent progresses in research of integrating multi-source remote sensing data for crop mapping[J]. Scientia Agricultura Sinica, 2015,48(6):1122-1135.
doi: 10.3864/j.issn.0578-1752.2015.06.09
[5] Atzberger C . Advances in remote sensing of agriculture:Context description,existing operational monitoring systems and major information needs[J]. Remote Sensing, 2013,5(2):949-981.
doi: 10.3390/rs5020949
[6] Wardlow B D, Egbert S L, Kastens J H . Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains[J]. Remote Sensing of Environment, 2007,108(3):290-310.
doi: 10.1016/j.rse.2006.11.021
[7] Yu K, Wang Z, Sun L, et al. Crop growth condition monitoring and analyzing in county scale by time series MODIS medium-resolution data [C]//Second International Conference on Agro-Geoinformatics, 2013: 1-6.
[8] 韩衍欣, 蒙继华, 徐晋 . 基于NDVI与物候修正的大豆长势评价方法[J]. 农业工程学报, 2017,33(2):177-182.
doi: 10.11975/j.issn.1002-6819.2017.02.024
Han Y X, Meng J H, Xu J . Soybean growth assessment method based on NDVI and phenological calibration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(2):177-182.
doi: 10.11975/j.issn.1002-6819.2017.02.024
[9] Islam A S, Bala S K . Assessment of potato phenological characteristics using MODIS-derived NDVI and LAI information[J]. GIScience and Remote Sensing, 2008,45(4):443-453.
doi: 10.2747/1548-1603.45.4.443
[10] Cheng Z, Meng J, Wang Y . Improving spring maize yield estimation at field scale by assimilating time-series HJ-1 CCD data into the WOFOST model using a new method with fast algorithms[J]. Remote Sensing, 2016,8(4), 303.
doi: 10.3390/rs8040303
[11] 覃志豪, 高懋芳, 秦晓敏 , 等. 农业旱灾监测中的地表温度遥感反演方法——以MODIS数据为例[J]. 自然灾害学报, 2005,14(4):64-71.
doi: 10.3969/j.issn.1004-4574.2005.04.011
Qin Z H, Gao M F, Qin X M , et al. Methodology to retrieve land surface temperature from MODIS data for agricultural drought monitoring in China[J]. Journal of Natural Disasters, 2005,14(4):64-71.
doi: 10.3969/j.issn.1004-4574.2005.04.011
[12] Wu B, Li Q . Crop planting and type proportion method for crop acreage estimation of complex agricultural landscapes[J]. International Journal of Applied Earth Observation and Geoinformation, 2012,16(1):101-112.
doi: 10.1016/j.jag.2011.12.006
[13] 刘庆生, 黄翀, 刘高焕 , 等. 基于关键期HJ卫星数据提取无棣县作物种植面积[J]. 中国农学通报, 2014,30(26):284-290.
doi: 10.11924/j.issn.1000-6850.2013-3313
Liu Q S, Huang C, Liu G H , et al. Planting area extraction of a crop key growth period in Wudi County based on HJ satellite data[J]. Chinese Agricultural Science Bulletin, 2014,30(26):284-290.
doi: 10.11924/j.issn.1000-6850.2013-3313
[14] 王立辉, 黄进良, 孙俊英 . 基于SVM的环境减灾卫星HJ-1B影像作物分类识别研究[J]. 世界科技研究与发展, 2009,31(6):1029-1032.
doi: 10.3969/j.issn.1006-6055.2009.06.014
Wang L H, Huang J L, Sun J Y . Study of crop classification by support vector machine on HJ-1B image[J]. World Sci-Tech R and D, 2009,31(6):1029-1032.
doi: 10.3969/j.issn.1006-6055.2009.06.014
[15] Lu D, Weng Q . A survey of image classification methods and techniques for improving classification performance[J]. International Journal of Remote Sensing, 2007,28(5):823-870.
doi: 10.1080/01431160600746456
[16] Blaes X, Holecz F ,Leeuwen H J C V ,et al.Regional crop monitoring and discrimination based on simulated ENVISAT ASAR wide swath mode images[J]. International Journal of Remote Sensing, 2007,28(2):371-393.
doi: 10.1080/01431160600735608
[17] Mariotto I, Thenkabail P S, Huete A , et al. Hyperspectral versus,multispectral crop-productivity modeling and type discrimination for the HyspIRI mission[J]. Remote Sensing of Environment, 2013,139(4):291-305.
doi: 10.1016/j.rse.2013.08.002
[18] Turker M, Ozdarici A . Field-based crop classification using SP-OT4,SPOT5,IKONOS and QuickBird imagery for agricultural areas:A comparison study[J]. International Journal of Remote Sensing, 2011,32(24):9735-9768.
doi: 10.1080/01431161.2011.576710
[19] 顾晓鹤, 潘耀忠, 何馨 , 等. 以地块分类为核心的冬小麦种植面积遥感估算[J]. 遥感学报, 2010,14(4):789-805.
doi: 10.3724/SP.J.1011.2010.01138
Gu X H, Pan Y Z, He X , et al. Measurement of sown area of winter wheat based on per-field classification and remote sensing imagery[J]. Journal of Remote Sensing, 2010,14(4):789-805.
doi: 10.3724/SP.J.1011.2010.01138
[20] 张雨果, 王飞, 孙文义 , 等. 基于面向对象的SPOT卫星影像梯田信息提取研究[J]. 水土保持研究, 2016,23(6):345-351.
Zhang Y G, Wang F, Sun W Y , et al. Terrace information extraction from SPOT remote sensing image based on object-oriented classification method[J]. Research of Soil and Water Conservation, 2016,23(6):345-351.
[21] Smith G M, Fuller R M . An integrated approach to land cover classification:An example in the island of Jersey[J]. International Journal of Remote Sensing, 2001,22(16):3123-3142.
doi: 10.1080/01431160152558288
[22] 潘瑜春, 黄兴荣, 马景宇 , 等. 面向精准农业的农田地块更新地理信息系统[J].农机化研究, 2006(8):77-81.
doi: 10.3969/j.issn.1003-188X.2006.08.027
Pan Y C, Huang X R, Ma J Y , et al. Field parcel information collection and update system forprecision agriculture[J].Journal of Agricultural Mechanization Research, 2006(8):77-81.
doi: 10.3969/j.issn.1003-188X.2006.08.027
[23] 李琴, 李大胜, 陈风波 . 地块特征对农业机械服务利用的影响分析——基于南方五省稻农的实证研究[J].农业经济问题, 2017(7):43-52.
Li Q, Li D S, Chen F B . Analysis of the effect of plot characteristics on the utilization of agricultural machinery:Based on the rice plots data of south China[J].Issues in Agricultural Economy, 2017(7):43-52.
[24] Turker M, Arikan M . Sequential masking classification of multi-temporal Landsat7 ETM+ images for field-based crop mapping in Karacabey,Turkey[J]. International Journal of Remote Sensing, 2005,26(17):3813-3830.
doi: 10.1080/01431160500166391
[25] 范磊, 程永政, 王来刚 , 等. 基于多尺度分割的面向对象分类方法提取冬小麦种植面积[J]. 中国农业资源与区划, 2010,31(6):44-51.
doi: 10.7621/cjarrp.1005-9121.20100610
Fan L, Cheng Y Z, Wang L G , et al. Estimation of winter wheat planting area using object-oriented method based on multi-scale segmentation[J]. Chinese Journal of Agricultural Resources and Regional Planting, 2010,31(6):44-51.
doi: 10.7621/cjarrp.1005-9121.20100610
[26] Zhang X, Du S . Learning selfhood scales for urban land cover mapping with very-high-resolution satellite images[J]. Remote Sensing of Environment, 2016,178:172-190.
doi: 10.1016/j.rse.2016.03.015
[27] Long J A, Lawrence R L, Greenwood M C , et al. Object-oriented crop classification using multitemporal ETM+ SLC-off imagery and random forest[J]. GIScience and Remote Sensing, 2013,50(4):418-436.
doi: 10.1080/15481603.2013.817150
[28] Peña-Barragán J M, Ngugi M K, Plant R E , et al. Object-based crop identification using multiple vegetation indices,textural features and crop phenology[J]. Remote Sensing of Environment, 2011,115(6):1301-1316.
doi: 10.1016/j.rse.2011.01.009
[29] Peña J, Gutiérrez P, Hervásmartínez C , et al. Object-based image classification of summer crops with machine learning methods[J]. Remote Sensing, 2014,6(6):5019-5041.
doi: 10.3390/rs6065019
[30] Stumpf A, Kerle N . Object-oriented mapping of landslides using random forests[J]. Remote Sensing of Environment, 2011,115(10):2564-2577.
doi: 10.1016/j.rse.2011.05.013
[31] Silveira M, Nascimento J C, Marques J S , et al. Comparison of segmentation methods for melanoma diagnosis in dermoscopy images[J]. IEEE Journal of Selected Topics in Signal Processing, 2009,3(1):35-45.
doi: 10.1109/JSTSP.2008.2011119
[32] Meinel G, Neubert M . A comparison of segmentation programs for high resolution remote sensing data[J]. International Archives of Photogrammetry and Remote Sensing XXXV, 2004: 1097-1105.
[33] Zhou W, Huang G, Cadenasso M L . Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes[J]. Landscape and Urban Planning, 2011,102(1):54-63.
doi: 10.1016/j.landurbplan.2011.03.009
[34] Wit A J W D, Clevers J G P W . Efficiency and accuracy of per-field classification for operational crop mapping[J]. International Journal of Remote Sensing, 2004,25(20):4091-4112.
doi: 10.1080/01431160310001619580
[35] 苏春梅, 曹殿才, 金成范 . 地理国情普查数据与国土二调数据的对比分析[J].测绘与空间地理信息, 2015(9):100-102.
doi: 10.3969/j.issn.1672-5867.2015.09.033
Su C M, Cao D C, Jin C F . Study on comparative analysis of the data between the first geographical conditions census and the second national land cover census[J].Geomatics and Spatial Information Technology, 2015(9):100-102.
doi: 10.3969/j.issn.1672-5867.2015.09.033
[36] 陈俊勇 . 关于地理国情普查的思考[J].地理空间信息, 2014(2):1-3.
doi: 10.11709/j.issn.1672-4623.2014.02.001
Chen J Y . Reflections on the national geographic conditions census[J].Geospatial Information, 2014(2):1-3.
doi: 10.11709/j.issn.1672-4623.2014.02.001
[37] 吴琼 . 浅谈地理国情普查成果的应用[J].测绘与空间地理信息, 2015(10):106-108.
doi: 10.3969/j.issn.1672-5867.2015.10.034
Wu Q . Application of the result of general survey of national geographic condition[J].Geomatics and Spatial Information Technology, 2015(10):106-108.
doi: 10.3969/j.issn.1672-5867.2015.10.034
[38] 张亚亚 . 基于GF-1遥感影像的农作物面积测量方法研究[D]. 长春:吉林大学, 2017.
Zhang Y Y . Research on the Method of Crop Area Measurement Based on GF-1 Remote Sensed Data[D]. Changchun:Jilin University, 2017.
[39] 张水华 . 3S技术在农村集体土地确权中的应用[J].测绘与空间地理信息, 2014(2):148-150.
doi: 10.3969/j.issn.1672-5867.2014.02.043
Zhang S H . 3S technology in the application of rural collective land counterpoising truly[J].Geomatics and Spatial Information Technology, 2014(2):148-150.
doi: 10.3969/j.issn.1672-5867.2014.02.043
[40] Derenyi E. A small crop information system [C]//Proceedings of Remote Sensing for Natural Resources, 1979: 78-87.
[41] Conrad C, Fritsch S, Zeidler J , et al. Per-field irrigated crop classification in arid central asia using SPOT and ASTER data[J]. Remote Sensing, 2010,2(4):1035-1056.
doi: 10.3390/rs2041035
[42] Löw F, Michel U, Dech S , et al. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,85(6):102-119.
doi: 10.1016/j.isprsjprs.2013.08.007
[43] Blaes X, Vanhalle L, Defourny P . Efficiency of crop identification based on optical and SAR image time series[J]. Remote Sensing of Environment, 2005,96(3):352-365.
doi: 10.1016/j.rse.2005.03.010
[44] Kussul N, Lemoine G, Gallego F J , et al. Parcel-based crop classification in Ukraine using Landsat-8 data and Sentinel-1A data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,9(6):2500-2508.
doi: 10.1109/JSTARS.2016.2560141
[45] Kuenzer C, Knauer K . Remote sensing of rice crop areas:A review[J]. International Journal of Remote Sensing, 2013,34(6):2101-2139.
doi: 10.1080/01431161.2012.738946
[46] 刘亮, 姜小光, 李显彬 , 等. 利用高光谱遥感数据进行农作物分类方法研究[J]. 中国科学院大学学报, 2006,23(4):484-488.
doi: 10.3969/j.issn.1002-1175.2006.04.008
Liu L, Jiang X G, Li X B , et al. Study on classification of agricultural crop by hyperspectral remote sensing data[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2006,23(4):484-488.
doi: 10.3969/j.issn.1002-1175.2006.04.008
[47] 刘佳, 王利民, 滕飞 , 等. RapidEye卫星红边波段对农作物面积提取精度的影响[J]. 农业工程学报, 2016,32(13):140-148.
doi: 10.11975/j.issn.1002-6819.2016.13.020
Liu J, Wang L M, Teng F , et al. Impact of red-edge waveband of RapidEye satellite on estimation accuracy of crop planting area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(13):140-148.
doi: 10.11975/j.issn.1002-6819.2016.13.020
[48] Shao Y, Fan X, Liu H , et al. Rice monitoring and production estimation using multitemporal RADARSAT[J]. Remote Sensing of Environment, 2001,76(3):310-325.
doi: 10.1016/S0034-4257(00)00212-1
[49] Arikan M. Parcel based crop mapping through multi-temporal masking classification of Landsat7 images in Karacabey,Turkey [C]//Proceedings of the ISPRS Symposium.ISPRS, 2011.
[50] Kussul N, Lemoine G, Gallego J, et al. Parcel based classification for agricultural mapping and monitoring using multi-temporal satellite image sequences [C]//Geoscience and Remote Sensing Symposium.IEEE, 2015: 165-168.
[51] 贾坤, 李强子 . 农作物遥感分类特征变量选择研究现状与展望[J]. 资源科学, 2013,35(12):2507-2516.
Jia K, Li Q Z . Review of features selection in crop classification using remote sensing data[J]. Resources Science, 2013,35(12):2507-2516.
[52] Bolstad P V, Lillesand T M . Rule-based classification models:Flexible integration of satellite imagery and thematic spatial data[J]. Photogrammetric Engineering and Remote Sensing, 1992,58(7):965-971.
doi: 10.1109/36.158881
[53] 吴炳方, 刘海燕 . 水稻种植面积估计的运行化遥感方法[J]. 遥感学报, 1997,1(1):58-63.
doi: 10.11834/jrs.19970109
Wu B F, Liu H Y . The operational methods for rice area estimation using remote sensing[J]. Journal of Remote Sensing, 1997,1(1):58-63.
doi: 10.11834/jrs.19970109
[54] Hughes G . On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968,14(1):55-63.
doi: 10.1109/TIT.1968.1054102
[55] Guyon I, Elisseeff A . An introduction to variable and feature selection[J]. Journal of Machine Learning Research, 2003,3(6):1157-1182.
doi: 10.1063/1.106515
[56] 王娜, 李强子, 杜鑫 , 等. 单变量特征选择的苏北地区主要农作物遥感识别[J]. 遥感学报, 2017,21(4):519-530.
doi: 10.11834/jrs.20176373
Wang N, Li Q Z, Du X , et al. Identification of main crops based on the univariate features selection in Subei[J]. Journal of Remote Sensing, 2017,21(4):519-530.
doi: 10.11834/jrs.20176373
[57] 王乃斌 . 中国小麦遥感动态监测与估产[M]. 北京: 中国科学出版社, 1996.
Wang N B. Winter Wheat Dynamic Monitoring and Yield Estimation with Remote Sensing in China[M]. Beijing: Chinese Science and Technology Press, 1996.
[58] Yang C, Everitt J H, Murden D . Evaluating high resolution SPOT5 satellite imagery for crop identification[J]. Computers and Electronics in Agriculture, 2011,75(2):347-354.
doi: 10.1016/j.compag.2010.12.012
[59] 赵英时 . 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.
Zhao Y S. The Principal and Method of Analysis of Remote Sensing Application[M]. Beijing: Science Press, 2003.
[60] Li Q, Wang C, Zhang B , et al. Object-based crop classification with Landsat-MODIS enhanced time-series data[J]. Remote Sensing, 2015,7(12):16091-16107.
doi: 10.3390/rs71215820
[61] Breiman L . Random forests[J]. Machine Learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324
[62] Miao X, Heaton J S, Zheng S F , et al. Applying tree-based ensemble algorithms to the classification of ecological zones using multi-temporal multi-source remote-sensing data[J]. International Journal of Remote Sensing, 2012,33(6):1823-1849.
doi: 10.1080/01431161.2011.602651
[63] 张晓羽, 李凤日, 甄贞 , 等. 基于随机森林模型的陆地卫星-8遥感影像森林植被分类[J]. 东北林业大学学报, 2016,44(6):53-57.
doi: 10.3969/j.issn.1000-5382.2016.06.014
Zhang X Y, Li F R, Zhen Z , et al. Forest vegetation classification of Landsat8 remote sensing image based on random forests model[J]. Journal of Northeast Forest University, 2016,44(6):53-57.
doi: 10.3969/j.issn.1000-5382.2016.06.014
[64] Breiman L . Bagging predictors[J]. Machine Learning, 1996,24(2):123-140.
[65] 贾坤, 李强子, 田亦陈 , 等. 遥感影像分类方法研究进展[J]. 光谱学与光谱分析, 2011,31(10):2618-2623.
doi: 10.3964/j.issn.1000-0593(2011)10-2618-06
Jia K, Li Q Z, Tian Y C , et al. A review of classification methods of remote sensing imagery[J]. Spectroscopy and Spectral Analysis, 2011,31(10):2618-2623.
doi: 10.3964/j.issn.1000-0593(2011)10-2618-06
[66] Gu X, Pan Y, He X . Measurement of sown area of winter wheat based on per-field classification and remote sensing imagery[J]. Journal of Remote Sensing, 2010,14(4):789-805.
doi: 10.3724/SP.J.1011.2010.01138
[1] 叶发茂,罗威,苏燕飞,赵旭青,肖慧,闵卫东. 卷积神经网络特征在遥感图像配准中的应用[J]. 国土资源遥感, 2019, 31(2): 32-37.
[2] 傅锋,王新杰,汪锦,王娜,佟济宏. 高分二号影像树种识别及龄组划分[J]. 国土资源遥感, 2019, 31(2): 118-124.
[3] 谢奇芳,姚国清,张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2): 38-43.
[4] 董立新. 三峡库区森林叶面积指数多模型遥感估算[J]. 国土资源遥感, 2019, 31(2): 73-81.
[5] 陈震,张耘实,章远钰,桑玲玲. 高标准农田建后遥感监测方法[J]. 国土资源遥感, 2019, 31(2): 125-130.
[6] 刘英,岳辉,侯恩科. MODIS数据在陕西省干旱监测中的应用[J]. 国土资源遥感, 2019, 31(2): 172-179.
[7] 胡官兵,刘舫,党伟,杨坤,陈庆松. 遥感技术在滇西南植被覆盖区地质填图中的应用[J]. 国土资源遥感, 2019, 31(2): 224-230.
[8] 梁林林,江利明,周志伟,陈玉兴,孙亚飞. 无人机遥感影像面向对象分类的冻土热融滑塌边界提取[J]. 国土资源遥感, 2019, 31(2): 180-186.
[9] 周阳,张云生,陈斯飏,邹峥嵘,朱耀晨,赵芮雪. 基于DCNN特征的建筑物震害损毁区域检测[J]. 国土资源遥感, 2019, 31(2): 44-50.
[10] 王海庆,李丽,陈玲,许文佳,杨金中,刘琼. 基于尾矿库调查的西藏自治区金属矿开采强度分析[J]. 国土资源遥感, 2019, 31(2): 218-223.
[11] 阿茹罕,何芳,王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[12] 曲海成,郭月,王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法[J]. 国土资源遥感, 2019, 31(2): 24-31.
[13] 史园莉,孙中平,姜俊,高乾,孙浩,闻瑞红. 环境遥感云服务平台与高性能平台对比分析[J]. 国土资源遥感, 2019, 31(2): 240-245.
[14] 陈玲,贾佳,王海庆. 高分遥感在自然资源调查中的应用综述[J]. 国土资源遥感, 2019, 31(1): 1-7.
[15] 葛芸,江顺亮,叶发茂,姜昌龙,陈英,唐祎玲. 聚合CNN特征的遥感图像检索[J]. 国土资源遥感, 2019, 31(1): 49-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发