Please wait a minute...
国土资源遥感  2019, Vol. 31 Issue (2): 10-16    DOI: 10.6046/gtzyyg.2019.02.02
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于RMNE方法的多尺度分割最优分割尺度选取
毛宁1,2,刘慧平1,2,刘湘平1,2,张洋华1,2
1.北京师范大学环境遥感与数字城市北京市重点实验室,北京 100875
2.北京师范大学地理科学学部地理学院,北京 100875
Optimal scale selection for multi-scale segmentation based on RMNE method
Ning MAO1,2,Huiping LIU1,2,Xiangping LIU1,2,Yanghua ZHANG1,2
1.Beijing Key Laboratory of Environmental Remote Sensing and Digital Cities, Beijing Normal University, Beijing 100875, China
2.School of Geography, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
全文: PDF(6345 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

多尺度分割是面向对象地物信息提取技术中的重要方法之一。最优分割尺度的选取是该方法的研究热点。针对现有最优分割尺度选取方法大多仅利用对象光谱特征的局限,本文提出RMNE(the ratio of mean difference to neighbors (Abs) to entropy)方法,利用纹理特征的信息熵和光谱特征与邻域均值差分绝对值进行对象内部同质性和对象之间异质性的衡量,构建评价函数,通过绘制函数曲线选取最优分割尺度。以北京市城市边缘地区6 m空间分辨率的SPOT6多光谱影像为例进行多尺度分割,获得最优分割尺度组合为30,60和80,并与最大面积法和优度函数法选取的最优分割尺度对应的分割结果进行对比。结果表明,RMNE方法的分割结果最好,验证了该方法的有效性和对高空间分辨率影像的适用性; 通过与Google Earth影像对比,发现RMNE方法分割得到的影像对象大小与地物实际大小最为相符。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛宁
刘慧平
刘湘平
张洋华
关键词 面向对象多尺度分割RMNE最优分割尺度信息熵SPOT6    
Abstract

Multi-scale segmentation is one of the most important methods in object oriented information extraction, and the selection of optimal segmentation scale is a hot topic. Nevertheless, existing optimal segmentation scale selection methods only use spectral characteristics. In view of such a situation, this paper proposes a RMNE method, which uses textural information entropy to measure the heterogeneity between objects, uses spectral characteristics mean difference to neighborhoods to measure the object’s internal homogeneity and construct the evaluation function, and selects the optimal segmentation scales by drawing function curve. Taking 6 m spatial resolution multi-spectral SPOT6 image of the periphery of Beijing City as the multi-scale segmentation experiment example, the authors detected that the optimal scales combination is 30, 60 and 80. Compared with the multi-scale segmentation results whose optimal scales are obtained by the maximum area method and objective function method, it is shown that the effect of RMNE method is the best, which verifies the validity of the RMNE method and the applicability of the high resolution image. A comparison with Google Earth image shows that the image object’s size obtained by RMNE method is most consistent with that of the actual ground object.

Key wordsobject oriented    multi-scale segmentation    RMNE    optimal segmentation scale    entropy of information    SPOT6
收稿日期: 2018-01-29      出版日期: 2019-05-23
ZTFLH:  TP79  
基金资助:中央高校基本科研业务费专项资金资助项目和国家自然科学基金项目共同资助(40671127)
作者简介: 毛 宁(1994-),女,硕士,主要从事遥感影像分割及土地利用变化监测研究。Email: maoning0521@126.com。
引用本文:   
毛宁,刘慧平,刘湘平,张洋华. 基于RMNE方法的多尺度分割最优分割尺度选取[J]. 国土资源遥感, 2019, 31(2): 10-16.
Ning MAO,Huiping LIU,Xiangping LIU,Yanghua ZHANG. Optimal scale selection for multi-scale segmentation based on RMNE method. Remote Sensing for Land & Resources, 2019, 31(2): 10-16.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.02.02      或      http://www.gtzyyg.com/CN/Y2019/V31/I2/10
Fig.1  研究流程
Fig.2  研究区影像 (SPOT6 NIR(R),R(G),G(B)假彩色合成)
Fig.3  RMNE方法计算结果
Fig.4  最大面积法和优度函数法结果
Fig.5  多尺度分割结果
Fig.6  多尺度分割结果与参考影像对比
[1] Hall O, Hay G J . A multiscale object-specific approach to digital change detection[J]. International Journal of Applied Earth Observation and Geoinformation, 2003,4(4):311-327.
doi: 10.1016/S0303-2434(03)00010-2
[2] Espindola G M, Camara G, Reis I A , et al. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation[J]. International Journal of Remote Sensing, 2006,27(14):3035-3040.
doi: 10.1080/01431160600617194
[3] Woodcock C E, Strahler A H . The factor of scale in remote sensing[J]. Remote Sensing of Environment, 1987,21(3):311-332.
doi: 10.1016/0034-4257(87)90015-0
[4] 张俊, 朱国龙, 李妍 . 面向对象高分辨率影像信息提取中的尺度效应及最优尺度研究[J]. 测绘科学, 2011,36(2):107-109.
Zhang J, Zhu G L, Li Y . Scale effect and optimal scale in object-oriented information extraction of high spatial resolution remote sensing image[J]. Science of Surveying and Mapping, 2011,36(2):107-109.
[5] 黄慧萍, 吴炳方 . 地物大小、对象尺度、影像分辨率的关系分析[J]. 遥感技术与应用, 2006,21(3):243-248.
doi: 10.3969/j.issn.1004-0323.2006.03.013
Huang H P, Wu B F . Analysis to the relationship of feature size,objects scales,image resolution[J]. Remote Sensing Technology and Application, 2006,21(3):243-248.
doi: 10.3969/j.issn.1004-0323.2006.03.013
[6] 佃袁勇, 方圣辉, 姚崇怀 . 多尺度分割的高分辨率遥感影像变化检测[J]. 遥感学报, 2016,20(1):129-137.
doi: 10.11834/jrs.20165074
Dian Y Y, Fang S H, Yao C H . Change detection for high-resolution images using multilevel segment method[J]. Journal of Remote Sensing, 2016,20(1):129-137.
doi: 10.11834/jrs.20165074
[7] 袁秀华, 罗卫, 王聪颖 . 赣州稀土矿山高分辨率遥感影像分割的最优尺度选取[J].测绘与空间地理信息, 2013(9):48-50.
doi: 10.3969/j.issn.1672-5867.2013.09.013
Yuan X H, Luo W, Wang C Y . Optimal scale selection research of high-resolution remote sensing images of rare earth mine in Ganzhou[J].Geomatics and Spatial Information Technology, 2013(9):48-50.
doi: 10.3969/j.issn.1672-5867.2013.09.013
[8] Liang K, Tjahjadi T . Adaptive scale fixing for multiscale texture segmentation[J]. IEEE Transactions on Image Processing, 2006,15(1):249-256.
doi: 10.1109/TIP.2005.860340 pmid: 16435554
[9] Coburn C A , Roberts A C B .A multiscale texture analysis procedure for improved forest stand classification[J]. International Journal of Remote Sensing, 2004,25(20):4287-4308.
doi: 10.1080/0143116042000192367
[10] Kim M, Warner T A, Madden M , et al. Multi-scale GEOBIA with very high spatial resolution digital aerial imagery:Scale,texture and image objects[J]. International Journal of Remote Sensing, 2011,32(10):2825-2850.
doi: 10.1080/01431161003745608
[11] 林雪, 彭道黎, 黄国胜 , 等. 结合多尺度纹理特征的遥感影像面向对象分类[J]. 测绘工程, 2016,25(7):22-27.
doi: 10.19349/j.cnki.issn1006-7949.2016.07.005
Lin X, Peng D L, Huang G S , et al. Object-oriented classification with multi scale texture feature based on remote sensing image[J]. Engineering of Surveying and Mapping, 2016,25(7):22-27.
doi: 10.19349/j.cnki.issn1006-7949.2016.07.005
[12] Wang J L, Han Y, Zhao S S , et al. A new multi-scale analytic algorithm for edge extraction of strawberry leaf images in natural light[J]. International Journal of Agriculturaland Biological Engineering, 2016,9(1):99-108.
[13] 李晓靖, 彭道黎, 王海宾 . 基于最优尺度和规则的高分辨率影像分类研究[J]. 测绘工程, 2017,26(9):14-22.
Lin X J, Peng D L, Wang H B . Classification of high-resolution image based on optimal scale and rule[J]. Engineering of Surveying and Mapping, 2017,26(9):14-22.
[14] 杨海平, 明冬萍 . 综合多层优选尺度的高分辨率影像分割[J]. 地球信息科学学报, 2016,18(5):632-638.
doi: 10.3724/SP.J.1047.2016.00632
Yang H P, Ming D P . Optimal scales based segmentation of high spatial resolution remote sensing data[J]. Journal of Geo-Information Science, 2016,18(5):632-638.
doi: 10.3724/SP.J.1047.2016.00632
[15] Malik J, Belongie S, Leung T , et al. Contour and texture analysis for image segmentation[J]. International Journal of Computer Vision, 2001,43(1):7-27.
doi: 10.1023/A:1011174803800
[1] 傅锋,王新杰,汪锦,王娜,佟济宏. 高分二号影像树种识别及龄组划分[J]. 国土资源遥感, 2019, 31(2): 118-124.
[2] 陈震,张耘实,章远钰,桑玲玲. 高标准农田建后遥感监测方法[J]. 国土资源遥感, 2019, 31(2): 125-130.
[3] 梁林林,江利明,周志伟,陈玉兴,孙亚飞. 无人机遥感影像面向对象分类的冻土热融滑塌边界提取[J]. 国土资源遥感, 2019, 31(2): 180-186.
[4] 马超,杨飞,王学成. 基于中尺度光谱和时序物候特征提取南方丘陵山区茶园[J]. 国土资源遥感, 2019, 31(1): 141-148.
[5] 刘义志,赖华荣,张丁旺,刘飞鹏,蒋小蕾,曹庆安. 多特征混合核SVM模型的遥感影像变化检测[J]. 国土资源遥感, 2019, 31(1): 16-21.
[6] 王月如,韩鹏鹏,关舒婧,韩宇,易琳,周廷刚,陈劲松. 基于Landsat8 OLI数据的富贵竹种植区域信息提取[J]. 国土资源遥感, 2019, 31(1): 133-140.
[7] 李微,刘伟男,贾越平,刘洪洋,汤勇. 基于面向对象法艾比湖卤虫信息提取[J]. 国土资源遥感, 2018, 30(4): 176-181.
[8] 何雪,邹峥嵘,张云生,杜守基,郑特. 面向对象的倾斜摄影测量点云分类方法[J]. 国土资源遥感, 2018, 30(2): 87-92.
[9] 金永涛, 杨秀峰, 高涛, 郭会敏, 刘世盟. 基于面向对象与深度学习的典型地物提取[J]. 国土资源遥感, 2018, 30(1): 22-29.
[10] 孙娜, 高志强, 王晓晶, 罗志东. 基于高分遥感影像的黄土高原地区水体高精度提取[J]. 国土资源遥感, 2017, 29(4): 173-178.
[11] 李春干, 梁文海. 基于面向对象变化向量分析法的遥感影像森林变化检测[J]. 国土资源遥感, 2017, 29(3): 77-84.
[12] 付盈, 国巧真, 潘应阳, 汪东川. 基于SPOT6数据的建筑物提取规则研究[J]. 国土资源遥感, 2017, 29(3): 65-69.
[13] 朱红春, 黄伟, 刘海英, 张忠芳, 王彬. 基于KL散度的面向对象遥感变化检测[J]. 国土资源遥感, 2017, 29(2): 46-52.
[14] 王玉, 付梅臣, 王力, 王长耀. 基于多源高分卫星影像的果棉套种信息提取[J]. 国土资源遥感, 2017, 29(2): 152-159.
[15] 滑永春, 李增元, 高志海, 郭中. 基于GF-2民勤县白刺包提取技术[J]. 国土资源遥感, 2017, 29(1): 71-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发