Please wait a minute...
国土资源遥感  2019, Vol. 31 Issue (2): 66-72    DOI: 10.6046/gtzyyg.2019.02.10
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
加入高程因子的航空高光谱影像大气辐射校正
伊丕源,李瀚波,童鹏,赵英俊,张川,田丰,车永飞,吴文欢
核工业北京地质研究院遥感信息与图像分析技术国家级重点实验室,北京 100029
Atmospheric radiation correction of airborne hyperspectral image by adding elevation factor
Piyuan YI,Hanbo LI,Peng TONG,Yingjun ZHAO,Chuan ZHANG,Feng TIAN,Yongfei CHE,Wenhuan WU
National Key Laboratory of Remote Sensing Information and Image Analyzing Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China
全文: PDF(7592 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地形效应是影响遥感定量分析的主要障碍之一。尤其对于航空高光谱遥感而言,其地形效应更为显著,地形高程、角度带来的影响都不可忽略。基于青海雪鞍山地区的CASI高光谱影像和LiDAR地形数据,开展地形高程变化对航空高光谱遥感的影响研究。在假定每一个高程点为水平朗伯体的前提下,首先,基于MODTRAN软件模拟计算不同高程对应的大气上行辐射、地物至传感器之间的大气透过率、大气半球反照率和下行总辐射,进行地形高程变化对4个参量的影响分析; 然后,设计实现了加入高程因子的大气辐射校正,完成了测区航空高光谱影像的反射率反演计算; 最后,与FLAASH大气校正的反射率结果进行比较,发现同类地物的反射率曲线在谱形方面接近,但反射率数值存在差异,尤其是FLAASH大气校正结果中短波波段甚至出现负值,无疑是错误的。实验表明,高程因子的变化对山地航空高光谱影像成像过程的影响不可忽略,要实现精确的航空高光谱影像大气辐射校正必须消除其影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
伊丕源
李瀚波
童鹏
赵英俊
张川
田丰
车永飞
吴文欢
关键词 地形效应高程高光谱大气辐射校正    
Abstract

Topographic effect is one of the main obstacles in quantitative analysis of remote sensing. For the airborne hyperspectral remote sensing, both of the impact of terrain height and angle can’t be ignored, and this causes more severe topographic effects. By taking the CASI image and LiDAR data of Qinghai Province as experimental data, the impact of elevation factor was analyzed in this paper. Firstly, on the premise that each elevation point is a horizontal Lambert body, four different elevation values were taken as reference to calculate the corresponding atmospheric radiation correction parameters by performing MODTRAN, which contain path radiance,atmospheric transmittance between the object and the sensor, atmospheric hemisphere albedo, and total downward radiance. Then an atmospheric radiation correction method with elevation factor was designed and applied to the atmospheric correction of CASI image. Finally, the CASI hyperspectral image was also processed by using FLAASH, which could only take one elevation value as reference. A comparison of two results shows that the reflectance spectrum shapes of the same ground objects are roughly the same,but the reflectance values are different. Especially, the short-wavelength reflectance values of FLAASH results are negative, and it is undoubtedly wrong. The experiment shows that the impact of elevation factors can’t be neglected. Atmospheric correction by adding elevation factors can get better results. For achieving accurate topographic correction of airborne hyperspectral image, both elevation and topographic angle factors should be considered simultaneously.

Key wordstopographic effect    elevation    hyperspectral    atmospheric correction
收稿日期: 2018-03-12      出版日期: 2019-05-23
ZTFLH:  TP79  
基金资助:国防重点实验室发展基金项目“航空高光谱大气辐射校正软件开发”(遥ZS1802);国防预研基金项目“基于辐射传输模型的航空中红外高光谱遥感图像大气校正研究”共同资助(321030204)
作者简介: 伊丕源(1982-),男,博士,高级工程师,主要从事遥感图像处理、遥感地质应用等方面的研究工作。Email: yipiyuan@163.com。
引用本文:   
伊丕源,李瀚波,童鹏,赵英俊,张川,田丰,车永飞,吴文欢. 加入高程因子的航空高光谱影像大气辐射校正[J]. 国土资源遥感, 2019, 31(2): 66-72.
Piyuan YI,Hanbo LI,Peng TONG,Yingjun ZHAO,Chuan ZHANG,Feng TIAN,Yongfei CHE,Wenhuan WU. Atmospheric radiation correction of airborne hyperspectral image by adding elevation factor. Remote Sensing for Land & Resources, 2019, 31(2): 66-72.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.02.10      或      http://www.gtzyyg.com/CN/Y2019/V31/I2/66
CASI-1500参数 参数数值 ALTM Gemini参数 参数数值
光谱范围/nm 3801 050 作业高度范围/m 1 5004 000
每行像元数 1 474 激光波长/nm 1 064
连续光谱通道数 288 波束角/mrad 0.3
光谱带宽/nm 2.4 平面精度 1/5 500×
对地高度
帧频(全波段) 14
焦距/ mm 41.2 高程精度/cm 535
垂直航线方向视场角/(°) 40 激光脉冲频率/kHz 33167
扫描频率/Hz 070
沿航线方向瞬时视场角/mRad 0.49 视场角/(°) ±25
侧滚补偿/(°) ±5
绝对辐射测量精度 <2% 回波接收能力/次 4
信噪比(峰值) >1 100
量化水平/bit 14 量化水平/bit 12
Tab.1  CASI高光谱成像仪与ALTM Gemini激光雷达测量系统参数
Fig.1  实验区数据源
地面高程/m 地表反射率 传感器高度/m
3 500 0 6 900
0.1 6 900
0.2 6 900
0.1 3 501
0.2 3 501
Tab.2  模拟输入参数
Fig.2  查找表结构示意图
Fig.3  不同高程对应的大气上行辐射
Fig.4  不同高程至传感器的大气透过率
Fig.5  不同高程对应的大气半球反照率
Fig.6  不同高程接收的下行总辐射
Fig.7  典型特征地物
Fig.8  各类地物反射率光谱对比
[1] Schaaf C, Li X, Strahler A . Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32(6):1186-1193.
doi: 10.1109/36.338367
[2] Oliphant A J , Spronken-Smith R A,Sturman A P ,et al.Spatial variability of surface radiation fluxes in mountainous terrain[J]. Journal of Applied Meteorology, 2003,42(1):113-128.
doi: 10.1175/1520-0450(2003)042&lt;0113:SVOSRF&gt;2.0.CO;2
[3] Wen J G, Zhao X J, Liu Q , et al. An improved land-surface albedo algorithm with DEM in rugged terrain[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(4):883-887.
doi: 10.1109/LGRS.2013.2280696
[4] 李爱农, 边金虎, 张正健 , 等. 山地遥感主要研究进展、发展机遇与挑战[J]. 遥感学报, 2016,20(5):1199-1215.
Li A N, Bian J H, Zhang Z J , et al. Progresses,opportunities,and challenges of mountain remote sensing research[J]. Journal of Remote Sensing, 2016,20(5):1199-1215.
[5] 宫鹏 . 遥感科学与技术中的一些前沿问题[J]. 遥感学报, 2009,13(1):13-23.
Gong P . Some essential questions in remote sensing science and technology[J]. Journal of Remote Sensing, 2009,13(1):13-23.
[6] 王少楠, 李爱农 . 地形辐射校正模型研究进展[J]. 国土资源遥感, 2012,24(2):1-6.doi: 10.6046/gtzyyg.2012.02.01.
doi: 10.6046/gtzyyg.2012.02.01
Wang S N, Li A N . The progress in the study of topographic radiometric correction models[J]. Remote Sensing for Land and Resources, 2012,24(2):1-6.doi: 10.6046/gtzyyg.2012.02.01.
doi: 10.6046/gtzyyg.2012.02.01
[7] 黄博, 徐丽华 . 基于改进型Minnaert地形校正模型的应用研究[J]. 遥感技术与应用, 2012,27(2):183-189.
Huang B, Xu L H . Applied research of topographic correction based on the improved Minnaert model[J]. Remote Sensing Technology and Application, 2012,27(2):183-189.
[8] Lu D S, Ge H L, He S Z , et al. Pixel-based Minnaert correction method for reducing topographic effects on a Landsat 7 ETM+ image[J]. Photogrammetric Engineering and Remote Sensing, 2008,74(11):1343-1350.
doi: 10.14358/PERS.74.11.1343
[9] Wen J G, Liu Q H, Liu Q , et al. Parametrized BRDF for atmospheric and topographic correction and albedo estimation in Jiangxi rugged terrain,China[J]. International Journal of Remote Sensing, 2009,30(11):2875-2896.
doi: 10.1080/01431160802558618
[10] Li A N, Wang Q F, Bian J H , et al. An improved physics-based model for topographic correction of Landsat TM images[J]. Remote Sensing, 2015,7(5):6296-6319.
doi: 10.3390/rs70506296
[11] Richter R, Kellenberger T, Kaufmann H . Comparison of topographic correction methods[J]. Remote Sensing, 2009,1(3):184-196.
doi: 10.3390/rs1030184
[12] Hantson S, Chuvieco E . Evaluation of different topographic correction methods for Landsat imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2011,13(5):691-700.
doi: 10.1016/j.jag.2011.05.001
[13] Balthazar V, Vanacker V, Lambin E F . Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas[J]. International Journal of Applied Earth Observation and Geoinformation, 2012,18(1):436-450.
doi: 10.1016/j.jag.2012.03.010
[14] 童庆禧, 张兵, 郑兰芬 . 高光谱遥感——原理、技术与应用[M]. 北京: 高等教育出版社, 2006: 86-105.
Tong Q X, Zhang B, Zheng L F. Hyperspectral Remote Sensing:Principle,Technology and Applications[M]. Beijing: Higher Education Press, 2006: 86-105.
[15] Adler-Golden S M, Matthew M W, Bernstein L S , et al. Atmospheric correction for short-wave spectral imagery based on MODTRAN4[J]. Proceedings of SPIE,the International Society for Optical Engineering, 1999,3753:61-69.
[16] Kaufman Y J . Atmospheric effect on spectral signature-measurements and corrections[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988,26(4):441-450.
doi: 10.1109/36.3048
[17] Anderson G P, Felde G W, Hoke M L , et al. MODTRAN4-based atmospheric correction algorithm:FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes)[J]. Proceedings of SPIE,the International Society for Optical Engineering, 2002,4725:65-71.
[1] 邢学文,刘松,许德刚,钱凯俊. 基于偏最小二乘法的高光谱水面油膜厚度估算[J]. 国土资源遥感, 2019, 31(2): 111-117.
[2] 阿茹罕,何芳,王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[3] 曲海成,郭月,王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法[J]. 国土资源遥感, 2019, 31(2): 24-31.
[4] 杜磊,陈洁,李敏敏,郑雄伟,李京,高子弘. 机载激光雷达技术在滑坡调查中的应用——以三峡库区张家湾滑坡为例[J]. 国土资源遥感, 2019, 31(1): 180-186.
[5] 王永敏,李西灿,田林亚,贾斌,杨惠. 土壤有机质含量地面高光谱估测模型对比分析[J]. 国土资源遥感, 2019, 31(1): 110-116.
[6] 侯增福,刘镕源,闫柏琨,谭琨. 基于波段选择与学习字典的高光谱图像异常探测[J]. 国土资源遥感, 2019, 31(1): 33-41.
[7] 涂兵,张晓飞,张国云,王锦萍,周瑶. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1): 22-32.
[8] 张东辉,赵英俊,秦凯. 典型目标地面光谱信息系统设计与实现[J]. 国土资源遥感, 2018, 30(4): 206-211.
[9] 徐念旭,田庆久,申怀飞,徐凯健. 基于微分变换的高光谱马尾松和杉木识别[J]. 国土资源遥感, 2018, 30(4): 28-32.
[10] 杨思睿,薛朝辉,张玲,苏红军,周绍光. 高光谱与LiDAR数据融合研究——以黑河中游张掖绿洲农业区精细作物分类为例[J]. 国土资源遥感, 2018, 30(4): 33-40.
[11] 刘万军,李天慧,曲海成. 基于Fisher准则和TrAdaboost的高光谱相似样本分类算法[J]. 国土资源遥感, 2018, 30(4): 41-48.
[12] 杨达昌,陈洁,高子弘,韩亚超. 天宫一号高光谱数据烃类微渗漏信息提取[J]. 国土资源遥感, 2018, 30(2): 107-113.
[13] 崔静,董新丰,丁锐,张世民,王琮禾,鲁恒新,孙艳云. 基于光谱磁化率模型的黄土剖面地层划分[J]. 国土资源遥感, 2018, 30(2): 202-207.
[14] 吴东洋,马丽. 多流形LE算法在高光谱图像降维和分类上的应用[J]. 国土资源遥感, 2018, 30(2): 80-86.
[15] 张雅莉, 阿尔达克·克里木, 张东, 依力亚斯江·努尔麦麦提, 张飞. 基于Landsat8 OLI影像光谱的土壤盐分估算模型研究[J]. 国土资源遥感, 2018, 30(1): 87-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发