Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (2): 131-139    DOI: 10.6046/gtzyyg.2019.02.19
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
黄土高原典型区土壤保持服务效应研究
周日平
中煤地质集团北京大地高科地质勘查有限公司,北京 100040
Assessing the soil erosion control service in the typical area of Loess Plateau
Riping ZHOU
Beijing Dadi High-Tech Geology Exploration Co., Ltd., China Coal Geology Group, Beijing 100040, China
全文: PDF(2622 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

黄土高原生态屏障区是我国“两屏三带”的重要组成部分,不仅对当地居民具有重要的屏障作用,同时也对黄河中下游具有重要的影响。本研究以土壤侵蚀量为评估指标,应用修正的通用土壤流失方程,利用2000—2010年间土地覆被、气象站点和泥沙站点等多源数据,定量评估了黄土高原生态屏障区退耕还林还草生态工程的土壤保持效应。结果表明,2000—2010年间,尽管黄土高原降雨量明显增多,降雨侵蚀力在增强,但研究区以退耕还草为主,退耕还草面积达到3 287.01 km 2,研究区植被覆盖在以1.29%/a速率递增; 土壤侵蚀状况发生明显改善,土壤侵蚀模数由2000年的6 579.55 t·km -2·a -1降低到了2010年的1 986.66 t·km -2·a -1,土壤侵蚀等级由剧烈侵蚀向微度侵蚀转变,侵蚀等级在逐渐降低,低覆盖度-烈度土壤侵蚀面积在大幅度降低,而高覆盖度-微度土壤侵蚀类型面积在大幅度提升; 并且流域土壤侵蚀强度与相关站点含沙量和输沙量呈正相关,黄土高原生态屏障效应在不断加强。该研究对加强生态安全格局建设,促进我国生态文明建设具有一定的借鉴意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周日平
关键词 黄土高原土壤保持生态系统服务    
Abstract

The Loess Plateau ecological barrier area is an important part of the “ two screens and three belts” in China. It not only has an important barrier effect on local residents, but also has an important impact on the middle and lower reaches of the Yellow River. This paper is based on the typical area in Loess Plateau as the research object, takes the soil conservation quantity as the evaluation index and uses the revised universal soil loss equation (RUSLE) as the evaluation method. Meanwhile, It uses the data of land use/cover change, meteorological observation, MODIS data and some other data to assess the effect function of the grain for green and the conservation of soil and water of the typical area in Loess Plateau from 2000 to 2010. The results showed that the land use/cover type changed sharply in the study area in nearly 10 years. A large number of arable land became the forest and grassland, the vegetation coverage had increased apparently and the service function of the conservation of soil and water rose linearly. The soil erosion modulus was close to 1 986.66 t·km -2·a -1 in 2010. These data show that the ecological environment has improved and the function of the conservation of soil and water have enhanced significantly since the government implemented the grain for green.

Key wordsLoess Plateau    soil conservation    ecosystem services
收稿日期: 2018-12-18      出版日期: 2019-05-23
:  TP79  
基金资助:陕西省自然科学基金项目“基于分布式模型的流域尺度土地覆被变化的土壤侵蚀效应研究”(2018JM4016);陕西省土地整治重点实验室开放基金项目“黄土高原退化土地的生态恢复遥感监测与评估”共同资助(2018-ZD01)
作者简介: 周日平(1965-),女,高级工程师,主要从事遥感生态环境方面的科研工作。Email: zhou_rp@sina.com。
引用本文:   
周日平. 黄土高原典型区土壤保持服务效应研究[J]. 国土资源遥感, 2019, 31(2): 131-139.
Riping ZHOU. Assessing the soil erosion control service in the typical area of Loess Plateau. Remote Sensing for Land & Resources, 2019, 31(2): 131-139.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.02.19      或      https://www.gtzyyg.com/CN/Y2019/V31/I2/131
Fig.1  黄土高原生态屏障区研究范围
Fig.2  2000—2010年植被覆盖度变化
侵蚀强度 2000年 2005年 2010年 2000—2010变化率
微度 50.57 67.12 72.54 43.44
轻度 6.26 6.84 6.62 5.75
中度 10.09 9.60 8.77 -13.08
强度 7.85 6.01 5.08 -35.29
极强 10.84 6.11 4.64 -57.20
剧烈 14.39 4.31 2.35 -83.67
Tab.1  2000—2010年黄土高原生态屏障区土壤侵蚀强度面积百分比变化
年份 侵蚀
强度
2005年
微度 轻度 中度 强度 极强 剧烈
2000年 微度 65.46 9.07 11.80 6.22 5.07 2.36
轻度 60.84 10.02 13.22 7.13 6.07 2.73
中度 54.21 11.16 15.34 8.66 7.30 3.32
强度 47.01 11.99 17.52 10.40 8.89 4.18
极强 40.45 12.41 19.12 11.93 10.87 5.22
剧烈 32.33 11.58 19.10 13.38 14.21 9.39
Tab.2  2000—2005年黄土高原生态屏障区土壤侵蚀强度转移矩阵
年份 侵蚀
强度
2010年
微度 轻度 中度 强度 极强 剧烈
2005年 微度 77.32 10.95 7.63 2.28 1.39 0.44
轻度 47.31 21.30 21.97 6.13 2.64 0.65
中度 29.14 16.96 30.78 14.60 7.07 1.45
强度 17.06 10.36 27.54 23.67 17.30 4.06
极强 10.35 5.79 18.75 22.81 30.48 11.82
剧烈 4.39 2.36 7.90 12.33 31.90 41.12
Tab.3  2005—2010年黄土高原生态屏障区土壤侵蚀强度转移矩阵
Fig.3  2000—2010年黄土高原生态屏障区不同植被覆盖度土壤侵蚀强度变化百分比
区域 类型 2000年 2001年 2002年 2003年 2004年 2005年 2006年 2007年 2008年 2009年 2010年
退耕还草 剧烈 150.29 71.55 81.56 122.59 28.48 32.63 27.56 27.00 20.96 14.24 16.77
极强 98.74 67.37 88.40 93.84 49.60 52.36 56.96 47.59 43.98 32.68 39.45
重度 63.51 55.31 69.04 66.40 51.17 54.31 58.19 51.22 47.88 37.47 44.24
中度 71.20 79.41 88.04 81.94 82.38 85.28 91.81 86.30 81.14 70.48 76.76
轻度 38.06 51.84 51.42 43.98 58.72 60.21 62.81 61.08 59.42 56.41 58.44
微度 103.83 200.75 148.75 118.46 256.86 242.42 229.88 254.01 273.83 315.93 291.05
退耕还林 剧烈 5.02 0.63 2.33 2.49 0.08 0.20 0.11 0.11 0 0.02 0.04
极强 4.23 1.04 3.22 3.24 0.55 0.72 0.37 0.26 0.12 0.05 0.07
重度 3.41 1.62 2.68 2.93 0.86 1.08 0.70 0.51 0.21 0.16 0.13
中度 4.08 2.86 4.56 4.27 2.21 2.64 1.73 1.59 0.64 0.73 0.51
轻度 2.58 2.19 2.90 2.82 2.07 2.13 1.69 1.85 0.83 0.82 0.53
微度 15.06 26.24 18.87 18.81 28.79 27.79 29.96 30.22 32.76 32.78 33.08
草地转林地 剧烈 20.57 6.79 9.31 12.55 2.37 3.06 1.34 1.91 1.02 0.57 0.68
极强 15.89 6.94 11.03 11.46 4.22 4.66 3.43 3.27 2.23 1.36 1.94
重度 11.10 6.49 9.35 10.04 5.12 5.90 4.79 4.03 3.02 2.14 2.99
中度 15.70 11.13 15.10 15.02 10.04 11.16 9.97 7.52 6.44 5.45 6.09
轻度 9.95 8.54 9.40 10.48 8.13 8.96 9.05 6.55 5.47 4.83 5.63
微度 46.45 79.09 64.77 59.41 89.07 85.21 90.38 95.65 100.78 104.61 102.32
Tab.4  2000—2010年黄土高原退耕还林还草区域土壤侵蚀强度面积统计
Fig.4  2000—2010年子流域土壤侵蚀量与含沙量对比
Fig.5  2000—2010年子流域土壤侵蚀量与输沙量对比
[1] 张科利, 刘宝元, 蔡永明 . 土壤侵蚀预报研究中的标准小区问题论证[J]. 地理研究, 2000,19(3):297-302.
Zhang K L, Liu B Y, Cai Y M . The standard of unit plot in soil loss prediction of China[J]. Geographical Research, 2000,19(3):297-302.
[2] 傅伯杰, 徐延达, 吕一河 . 景观格局与水土流失的尺度特征与耦合方法[J]. 地球科学进展, 2010,25(7):673-681.
Fu B J, Xu Y D, Lyu Y H . Scale characteristics and coupled research of landscape pattern and soil and water loss[J]. Advances in Earth Science, 2010,25(7):673-681.
[3] 谢宝妮, 秦占飞, 王洋 , 等. 黄土高原植被净初级生产力时空变化及其影响因素[J]. 农业工程学报, 2014,30(11):244-253.
Xie B N, Qin Z F, Wang Y , et al. Spatial and temporal variation in terrestrial net primary productivity on Chinese Loess Plateau and its influential factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(11):244-253.
[4] Pimentel D, Kounang N . Ecology of soil erosion in ecosystems[J]. Ecosystems, 1998,1(5):416-426.
doi: 10.1007/s100219900035
[5] 姚文艺, 肖培青 . 黄土高原土壤侵蚀规律研究方向与途径[J]. 水利水电科技进展, 2012,32(2):73-78.
Yao W Y, Xiao P Q . Research direction of the study of soil erosion in the Loess Plateau[J]. Advances in Science and Technology of Water Resources, 2012,32(2):73-78.
[6] Zhu T X.Gully and tunnel erosion in the hilly Loess Plateau region, China[J].Geomorphology, 2012,153-154:144-155.
doi: 10.1016/j.geomorph.2012.02.019
[7] Bullock A, King B . Evaluating China’s slope land conversion program as sustainable management in Tianquan and Wuqi Counties[J]. Journal of Environmental Management, 2011,92(8):1916-1922.
[8] Wang F, Mu X M, Li R , et al. Co-evolution of soil and water conservation policy and human-environment linkages in the Yellow River Basin since 1949[J]. Science of the Total Environment, 2015,508:166-177.
doi: 10.1016/j.scitotenv.2014.11.055
[9] 黄河上中游管理局. 黄河流域水土保持概论[M]. 郑州: 黄河水利出版社, 2011: 64-96.
Administration of the Upper and Middle Reaches of the Yellow River. Introduction to Soil and Water Conservation in the Yellow River Basin[M]. Zhengzhou: Yellow River Water Conservancy Press, 2011: 64-96.
[10] Feng X M, Wang Y F, Chen L D , et al. Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau[J]. Geomorphology, 2010,118(3-4):239-248.
doi: 10.1016/j.geomorph.2010.01.004
[11] 高海东, 李占斌, 李鹏 , 等. 基于土壤侵蚀控制度的黄土高原水土流失治理潜力研究[J]. 地理学报, 2015,70(9):1503-1515.
Gao H D, Li Z B, Li P , et al. The capacity of soil loss control in the Loess Plateau based on soil erosion control degree[J]. Acta Geographica Sinica, 2015,70(9):1503-1515.
[12] Milly P C D, Dunne K A, Vecchia A V . Global pattern of trends in streamflow and water availability in a changing climate[J]. Nature, 2005,438(7066):347-350.
doi: 10.1038/nature04312
[13] 穆兴民, 巴桑赤烈 Zhang Lu , 等. 黄河河口镇至龙门区间来水来沙变化及其对水利水保措施的响应[J].泥沙研究, 2007 (2):36-41.
Mu X M, Chille B, Zhang L , et al. Impact of soil conservation measures on runoff and sediment in Hekou-Longmen region of the Yellow River[J].Journal of Sediment Research, 2007 (2):36-41.
[14] 姚文艺, 冉大川, 陈江南 . 黄河流域近期水沙变化及其趋势预测[J]. 水科学进展, 2013,24(5):607-616.
Yao W Y, Ran D C, Chen J N . Recent changes in runoff and sediment regimes and future projections in the Yellow River Basin[J]. Advances in Water Science, 2013,24(5):607-616.
[15] 李天宏, 郑丽娜 . 基于RUSLE模型的延河流域2001—2010年土壤侵蚀动态变化[J]. 自然资源学报, 2012,27(7):1164-1175.
Li T H, Zheng L N . Soil erosion changes in the Yanhe Watershed from 2001 to 2010 based on RUSLE model[J]. Journal of Natural Resources, 2012,27(7):1164-1175.
[16] Wischmeier W H, Smith D D . Predicting rainfall erosion losses from cropland east of the Rocky Mountains:A guide for selection of practices for soil and water conservation[M] //United States Department of Agriculture Handbook.Washington D C:United States Department of Agriculture, 1965.
[17] Renard K G, Ferreira V A . RUSLE model description and database sensity[J]. Journal of Environment Quality, 1993,22(3):458-466.
[18] Prasannakumar V, Vijith H, Abinod S , et al. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala,India,using revised universal soil loss equation (RUSLE) and geo-information technology[J]. Geoscience Frontiers, 2012,3(2):209-215.
doi: 10.1016/j.gsf.2011.11.003
[19] Asis A M D, Omasa K . Estimation of vegetation parameter for modeling soil erosion using linear spectral mixture analysis of Landsat ETM data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007,62(4):309-324.
doi: 10.1016/j.isprsjprs.2007.05.013
[20] 卜兆宏, 孙金庄, 周伏建 , 等. 水土流失定量遥感方法及其应用的研究[J]. 土壤学报, 1997,34(3):235-245.
Bu Z H, Sun J Z, Zhou F J , et al. A study on quantitative remote sensing method of soil erosion and its application[J]. Acta Pedo-logica Sinica, 1997,34(3):235-245.
[21] Liu B Y, Zhang K L, Xie Y. An empirical soil loss equation[C]//Proceedings 12th International Soil Conservation Organization Conference. Beijing: Tsinghua University Press, 2002: 490-494.
[22] 江忠善, 王志强, 刘志 . 黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报, 1996 (1):1-9.
Jiang Z S, Wang Z Q, Liu Z . Quantitative study on spatial variation of soil erosion in a small watershed in loess hilly region[J].Journal of Soil Erosion and Soil and Water Conservation, 1996 (1):1-9.
[23] Laflen J M, Lane L J, Foster G R . WEPP:A new generation of erosion prediction technology[J]. Journal of Soil and Water Conservation, 1991,46(1):34-38.
[24] Bathurst J C, Wicks J M , O’Connell P E .The SHE/SHESED basin scale water flow and sediment transport modelling system[J]. Computer Models of Watershed Hydrology, 1995: 563-594.
[25] Meusburger K, Konz N, Schaub M , et al. Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment[J]. International Journal of Applied Earth Observation and Geoinformation, 2010,12(3):208-215.
doi: 10.1016/j.jag.2010.02.004
[26] 盛莉, 金艳, 黄敬峰 . 中国水土保持生态服务功能价值估算及其空间分布[J]. 自然资源学报, 2010,25(7):1105-1113.
doi: 10.11849/zrzyxb.2010.07.006
Sheng L, Jin Y, Huang J F . Value estimation of conserving water and soil of ecosystem in China[J]. Journal of Natural Resources, 2010,25(7):1105-1113.
[27] Feng X M, Wang Y F, Chen L D , et al. Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau[J]. Geomorphology, 2010,118(3-4):239-248.
doi: 10.1016/j.geomorph.2010.01.004
[28] Renard K G, Foster G R, Weesies G A , et al. Predicting soil erosion by water:A guide to conservation planning with the revised universal soil loss equation(RUSLE)[M] //United States Department of Agriculture Handbook.Washington D C:United States Department of Agriculture, 1997.
[29] Williams J R, Dyke P T, Jones C A . EPIC:A model for assessing the effects of erosion on soil productivity[J]. Developments in Environmental Modelling, 1983,5:553-572.
doi: 10.1016/B978-0-444-42179-1.50065-1
[30] 蔡崇法, 丁树文, 史志华 , 等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000,14(2):19-24.
Cai C F, Ding S W, Shi Z H , et al. Study of applying USLE and geo-graphical information system IDRISI to predict soil erosion in small watershed[J]. Journal of Soil and Water Conservation, 2000,14(2):19-24.
[31] Remortel R D V, Maichle R W, Hickey R J . Computing the LS factor for the revised universal soil loss equation through array-based slope processing of digital elevation data using a C++ executable[J]. Computers and Geosciences, 2004,30(9-10):1043-1053.
doi: 10.1016/j.cageo.2004.08.001
[32] 冯强, 赵文武 . USLE/RUSLE中植被覆盖与管理因子研究进展[J]. 生态学报, 2014,34(16):4461-4472.
Feng Q, Zhao W W . The study on cover-management factor in USLE and RUSLE:A review[J]. Acta Ecologica Sinica, 2014,34(16):4461-4472.
[33] Fu B J, Liu Y, Lyu Y H , et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China[J]. Eco-logical Complexity, 2011,8(4):284-293.
doi: 10.1016/j.ecocom.2011.07.003
[34] 李小文, 曹春香, 常超一 . 地理学第一定律与时空邻近度的提出[J]. 自然杂志, 2007,29(2):69-71.
doi:
Li X W, Cao C X, Chang C Y . The first law of geography and spatial-temporal proximity[J]. Chinese Journal of Nature, 2007,29(2):69-71.
[35] Yang Q K, David J, Li R , et al. Re-scaling lower resolution slope by histogram matching[M] //Advances in Digital Terrain Analysis.Springer Berlin Heidelberg, 2008: 193-210.
[1] 汪清川, 奚砚涛, 刘欣然, 周文, 徐欣冉. 生态服务价值对土地利用变化的时空响应研究——以徐州市为例[J]. 自然资源遥感, 2021, 33(3): 219-228.
[2] 张瑜, 赵晓丽, 左丽君, 张增祥, 徐进勇. 黄土高原土地利用变化对生态系统服务价值的影响[J]. 国土资源遥感, 2019, 31(3): 132-139.
[3] 孙娜, 高志强, 王晓晶, 罗志东. 基于高分遥感影像的黄土高原地区水体高精度提取[J]. 国土资源遥感, 2017, 29(4): 173-178.
[4] 刘哲, 邱炳文, 王壮壮, 齐文. 2001-2014年间黄土高原植被覆盖状态时空演变分析[J]. 国土资源遥感, 2017, 29(1): 192-198.
[5] 许旭, 任斐鹏, 韩念龙. 2000—2009年河北省生态系统服务价值时空动态遥感监测[J]. 国土资源遥感, 2015, 27(1): 187-193.
[6] 尹锴, 赵千钧, 文美平, 花利忠, 吝涛, 石龙宇. 海岛型城市森林景观格局效应及其生态系统服务评估[J]. 国土资源遥感, 2014, 26(2): 128-133.
[7] 许旭, 郜昂, 朱萍萍, 周增科. 基于多源遥感数据的生态系统服务价值评估——以河北省为例[J]. 国土资源遥感, 2013, 25(4): 180-186.
[8] 许旭, 李晓兵, 韩念龙. 基于多源遥感数据的生态系统保育土壤价值评估——以河北省北部四地市为例[J]. 国土资源遥感, 2011, 23(3): 123-129.
[9] 石迎春, 叶浩, 郭娇, 董秋瑶. 几何纠正模式对QuickBird全色影像定位精度的影响——以黄土高原为例[J]. 国土资源遥感, 2011, 23(3): 135-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发