Please wait a minute...
国土资源遥感  2019, Vol. 31 Issue (2): 187-195    DOI: 10.6046/gtzyyg.2019.02.26
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
可燃物干燥指数在草地火险预警中的应用
黄宝华1,2
1.烟台市不动产登记中心,烟台 264003
2.中国农业大学(烟台)理工学院,烟台 264670
Application of fuel dry index in the prairie fire danger
Baohua HUANG1,2
1.Yantai Real Estate Registration Center, Yantai 264003, China
2.College of Technology, China Agriculture University (Yantai), Yantai 264670, China
全文: PDF(4534 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

在草地生物物理特性基础上,结合能量交换原则(由遥感和气象数据得到显热和潜热通量)提出了可燃物干燥指数(Fd),并将其应用于山东省草地火险监测。Fd较好解决了山东省草地火灾风险预警时空预测问题,提高了火险的估算精度,能够随时间变化动态预警山东省每日高火灾风险区域。将Fd与美国潜在火险模型(fire potential index,FPI)用于2010年4月8日的火险预警研究,结果表明FdFPI能够更好地指示火险。在等间距火险分类法中,2010年31个火点数据Fd值在Ⅲ级以上的占87.1%,Ⅰ级为0,火灾发生地点与火灾风险预警高的区域吻合较好。由Fd曲线图可以看出Fd与草地植被生长季节有着紧密的关系,初期和发育期的Fd值较高,但呈下降趋势; 中期Fd值低; 晚期Fd值高,并呈现上升趋势。总体说明了Fd指数在草地生长阶段火险预报中的重要作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄宝华
关键词 潜热通量显热通量可燃物干燥指数草地火险    
Abstract

In this paper, on the basis of prairie biophysical characteristics and in combination with the principle of energy exchange (sensible heat and latent heat flux obtained by remote sensing and meteorological data), the fuel dry index (Fd) was proposed and applied to the Shandong prairie fire monitoring. Fd can better solve the prairie fire forecast, fire danger early warning in time and space and the estimation accuracy. It can change dynamic warning daily high fire risk areas with time in Shandong Province. Fd and fire potential index (FPI) were used to study the fire danger on April 8, 2010. Fire indicating effect of Fd is better than that of FPI. In the equidistance fire classification, data of 31 fire points in 2010 indicated by Fd fell in grade III, accounting for 87.1%, and 0 fell in grade I; the fire locations were in good agreement with areas of high fire risk early warning. In fuel dry index (Fd) graph, it can be seen that Fd has close relationship with the prairie vegetation growing season; the early development of Fd is high, but later it exhibits decreasing trend; at the medium stage, Fd is low; at the late stage,Fd is high, and shows a trend of rising. Overall, the Fd index plays an important role in fire danger forecast at the grassland growing stage.

Key wordslatent heat flux    sensible heat flux    fuel dry index    prairie fire
收稿日期: 2018-02-02      出版日期: 2019-05-23
ZTFLH:  S762  
基金资助:烟台市科技发展计划项目“基于MODIS数据火险预警研究”(2009163);“山东海岸带遥感灾害监测”共同资助(2013ZH084)
作者简介: 黄宝华(1977-),男,高级工程师,博士,研究方向为GIS与遥感应用。Email: huangbaohua78@126.com。
引用本文:   
黄宝华. 可燃物干燥指数在草地火险预警中的应用[J]. 国土资源遥感, 2019, 31(2): 187-195.
Baohua HUANG. Application of fuel dry index in the prairie fire danger. Remote Sensing for Land & Resources, 2019, 31(2): 187-195.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.02.26      或      http://www.gtzyyg.com/CN/Y2019/V31/I2/187
Fig.1  2010年山东省植被类型分布
状态 个数 均值 标准差 均值的标准差
Fd 火点
非火点
31
62
0.652 9
0.183 8
0.204 4
0.087 5
0.036 7
0.011 1
Tab.1  火点/非火点Fd分组统计量
假设条件 方差方程Levene检验 均值方程的T检验
F统计量 P T统计量 自由度 P值(双尾) 均值差值 标准误差值 95%置信区间
下限 上限
假设方差相等 30.948 0.000 15.507 91.00 0.000 0.469 0 0.030 25 0.409 0 0.529 1
假设方差不相等 12.228 35.603 0.000 0.469 0 0.038 36 0.391 2 0.546 9
Tab.2  火点/非火点Fd独立样本的检验结果
Fig.2  山东省2010年4月8日火灾Fd和FPI相关性分析及数值变化
火险等级 Fd 火点个数 百分比/% 相应措施
<0.2 0 0 不燃烧,无火险。一般不会发生火灾,可以安心生产
[0.2,0.4) 4 12.9 难燃烧,低度火险。很少发生火灾,注意防火
[0.4,0.6) 9 29.0 中度火险。限制火种进入草地,生产用火应注意采取安全措施,禁止其他野外用火
[0.6,0.8) 10 32.3 高度火险。禁止火种进入草地,巡检,做好防火准备,准备灭火
≥0.8 8 25.8 极度火险。严禁一切火种进入草地,加强巡查,做好充分防火准备,灭火队伍随时准备灭火
Tab.3  基于可燃物干燥火险指数Fd的草地火险等级划分
Fig.3  山东省2010年火点随时间分布及与火险等级的关系
Fig.4  2010年山东省日最低温度、植被覆盖度、草地高度和草地LAI随时间变化关系
Fig.5  山东省2010年λE,HFd与DOY关系
Fig.6  山东省2010年DOY 25, 140, 241和301的Fd
[1] Smith B , McDermid G J .Examination of fire-related succession within the dry mixed-grass subregion of Alberta with the use of MODIS and Landsat[J]. Rangeland Ecology and Management, 2014,67(3):307-317.
doi: 10.2111/REM-D-13-00078.1
[2] 黄宝华, 张华, 周利霞 . 集成点燃和火源的火险指数应用研究[J]. 中国安全科学学报, 2013,23(8):37-42.
Huang B H, Zhang H, Zhou L X . Research on application of integrated fire danger index based on ignition and fire[J]. China Safety Science Journal, 2013,23(8):37-42.
[3] 黄宝华, 孙治军, 张华 , 等. 潜在森林火险评估方法研究——以山东省为例[J]. 灾害学, 2014,29(4):116-121.
Huang B H, Sun Z J, Zhang H , et al. Research on the evaluation method of potential forest fire:Taking Shandong Provience as an example[J]. Journal of Catastrophology, 2014,29(4):116-121.
[4] Agee J K, Wright C S, Williamson N , et al. Foliar moisture content of Pacific Northwest vegetation and its relation to wildland fire behavior[J]. Forest Ecology and Management, 2002,167(1-3):57-66.
doi: 10.1016/S0378-1127(01)00690-9
[5] Zarco-Tejada P J, Rueda C A, Ustin S L . Water content estimation in vegetation with MODIS reflectance data and model inversion methods[J]. Remote Sensing of Environment, 2003,85(1):109-124.
doi: 10.1016/S0034-4257(02)00197-9
[6] Huesca M, Litago J, Palacios-Orueta A , et al. Assessment of forest fire seasonality using MODIS fire potential:A time series approach[J]. Agricultural and Forest Meteorology, 2009,149(11):1946-1955.
doi: 10.1016/j.agrformet.2009.06.022
[7] Dasgupta S, Qu J J, Hao X , et al. Evaluating remotely sensed live fuel moisture estimations for fire behavior predictions in Georgia,USA[J]. Remote Sensing of Environment, 2007,108(2):138-150.
doi: 10.1016/j.rse.2006.06.023
[8] Dennison P E, Moritz M A, Taylor R S . Evaluating predictive models of critical live fuel moisture in the Santa Monica Mountains,California[J]. International Journal of Wildland Fire, 2008,17(1):18-27.
doi: 10.1071/WF07017
[9] Chuvieco E, González I, Verdú F , et al. Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem[J]. International Journal of Wildland Fire, 2009,18(4):430-441.
doi: 10.1071/WF08020
[10] Dennison P E, Roberts D A, Thorgusen S R , et al. Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index[J]. Remote Sensing of Environment, 2003,88(4):442-452.
doi: 10.1016/j.rse.2003.08.015
[11] Chowdhury E H, Hassan Q K . Operational perspective of remote sensing-based forest fire danger forecasting systems[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,104:224-236.
doi: 10.1016/j.isprsjprs.2014.03.011
[12] Snyder R L, Spano D, Duce P , et al. A fuel dryness index for grassland fire-danger assessment[J]. Agricultural and Forest Meteoro-logy, 2006,139(1-2):1-11.
doi: 10.1016/j.agrformet.2006.05.006
[13] 田国良 . 热红外遥感[M]. 北京: 电子工业出版社, 2006: 302-304.
Tian G L. Thermal Remote Sensing[M]. Beijing: Publishing House of Electronics Industry, 2006: 302-304.
[14] 王丁, 张丽琴, 薛建辉 . 林木对干旱胁迫的生理与分子响应研究综述[J]. 安徽农业科学, 2011,39(25):15426-15431.
Wang D, Zhang L Q, Xue J H . A review about physiological and molecular responses to drought stress of forest tree[J]. Journal of Anhui Agricultural Sciences, 2011,39(25):15426-15431.
[15] 张川, 闫浩芳, 大上博基 , 等. 表层有效土壤水分参数化及冠层下土面蒸发模拟[J].农业工程学报, 2015(2):102-107.
Zhang C, Yan H F, Oue H , et al. Parameterization of surface soil available moisture and simulation of soil evaporation beneath canopy[J].Transaction of the Chinese Society of Agricultural Engineering, 2015(2):102-107.
[16] Van de Griend A, Owe M . On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[J]. International Journal of Remote Sensing, 1993,14(6):1119-1131.
doi: 10.1080/01431169308904400
[17] 孙敏章, 刘作新, 吕谋超 , 等. 基于陆面能量平衡方程的遥感模型[J]. 灌溉排水学报, 2005,24(3):74-76.
Sun M Z, Liu Z X, Lyu M C , et al. The study of monitoring ET by SEBEL and its application in water resource management of Hai River Basin[J]. Journal of irrigation and orainage, 2005,24(3):74-76.
[18] 曾丽红, 宋开山, 张柏 , 等. 应用Landsat数据和SEBAL模型反演区域蒸散发及其参数估算[J]. 遥感技术与应用, 2008,23(3):255-263.
Zeng L H, Song K S, Zhang B , et al. Applying Landsat data and SEBAL model to inverse regional evapotranspiration and its parameters estimation[J]. Remote Sensing Technology and Application, 2008,23(3):255-263.
[19] Allen R G, Pereira L S, Raes D , et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements[M]. Italy:Food and Agriculture Organization of the United Nations Rome, 1998.
[20] Lagouarde J P, Brunet Y . Spatial integration of surface latent heat flux and evaporation mapping[J]. Advances in Space Research. 1989,9(7):259-264.
[21] Su Z, Jacobs C . ENVISAT:Actual Evaporation[R]. Delft:Beleidscommissie Remote Sensing, 2001.
[22] 田贵全, 张明才 . 山东省生态环境遥感监测[J]. 国土资源遥感, 2006,18(4):63-67.doi: 10.6046/gtzyyg.2006.04.16.
doi: 10.6046/gtzyyg.2006.04.16
Tian G Q, Zhang M C . The remote sensing monitoring of ecological environment in Shandong Province[J]. Remote Sensing for Land and Resources, 2006,18(4):63-67.doi: 10.6046/gtzyyg.2006.04.16.
doi: 10.6046/gtzyyg.2006.04.16
[23] 冉有华, 李新, 卢玲 . 基于多源数据融合方法的中国1 km土地覆盖分类制图[J]. 地球科学进展, 2009,24(2):192-203.
Ran Y H, Li X, Lu L . China land cover classification at 1 km spatial resolution based on a multi-source data fusion approach[J]. Advances in Earth Science, 2009,24(2):192-203.
[1] 余健,姚云军,赵少华,贾坤,张晓通,赵祥,孙亮. 基于改进的METRIC模型的农田潜热通量估算[J]. 国土资源遥感, 2018, 30(3): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发