Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (4): 69-78    DOI: 10.6046/gtzyyg.2019.04.10
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
Landsat TM/ETM波段反射率与水面油膜厚度关系研究
邢学文, 刘松, 钱凯俊
中国石油勘探开发研究院,北京 100083
Study of relationship between thickness of oil slicks and band reflectance of Landsat TM/ETM
Xuewen XING, Song LIU, Kaijun QIAN
Petrochina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
全文: PDF(8728 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

油膜厚度是溢油量估算的一个关键参数,是水面溢油事故评价的重要指标。为了确定不同油品油膜厚度的特征响应谱段以及Landsat TM/ETM多光谱遥感探测水面油膜厚度的可行性,以渤海海水为背景水,重原油、轻原油、柴油和汽油为实验油品,将石英卤素灯作为模拟太阳光源,ASD FieldSpec3便携式光谱仪作为探测仪器,在暗室开展了不同厚度油膜模拟及其光谱测量实验。通过计算油膜厚度与其在全谱段(350~2 500 nm)范围反射率的相关系数,确定了4个重原油、7个轻原油、6个柴油和4个汽油油膜厚度的特征响应谱段; 针对Landsat TM/ETM多光谱数据,根据其传感器的光谱响应函数,将不同厚度油膜的全谱段光谱进行重采样,获得不同厚度油膜在Landsat数据对应波段的反射率,通过制作油膜厚度-多光谱指标(波段反射率、波段比值)散点图,发现指示油膜厚度的特征多光谱指标,建立基于特征多光谱指标的油膜厚度估算模型。研究结果表明,对于重原油,波段B4反射率和波段比值B4/B5是较好的光谱指标; 对于轻原油,波段比值B1/B2和B1/B3是较好的光谱指标; 对于柴油,波段B1和B2反射率以及波段比值B1/B2,B1/B3,B1/B4,B2/B3,B2/B4和B3/B4都是非常好的光谱指标; 对于汽油,所有多光谱指标都存在分段特征,没有特别好的光谱指标。基于重原油、轻原油和柴油在全谱段范围内各自具有的多个油膜厚度特征响应谱段,Landsat TM/ETM多光谱遥感数据可以用于水面重原油、轻原油和柴油的油膜厚度估算。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢学文
刘松
钱凯俊
关键词 油膜厚度光谱反射率相关系数曲线拟合Landsat TM/ETM数据    
Abstract

Oil slick thickness is a key parameter in estimating oil spill volume. In order to determine the feasibility of detecting oil slick thickness on water surface by Landsat TM/ETM remote sensing, the authors used heavy crude oil, light crude oil, diesel oil and gasoline as experimental oils, quartz brine as a simulated solar light source, ASD Field Spec 3 portable spectrometer as a detection instrument, and carried out oil film simulation with different thicknesses and pectral measurement experiments. By calculating the correlation coefficient of oil slick thickness and its reflectance in the range from 350 to 2 500 nm, four characteristic response spectra for heavy crude oil, seven characteristic response spectra for light crude oil, six characteristic response spectra for diesel oil and four characteristic response spectra for gasoline were determined. For Landsat TM/ETM data,characteristic multispectral indices were found by scatter plot of oil slicks thickness-multispectral indices (band reflectance and band ratio), and oil slick thickness estimation model was established. For heavy crude oil, band B4 and band ratio B4/B5 are better spectral indices; for light oil, band ratio B1/B2 and B1/B3 are good spectral indicators; for diesel fuel, band B1, B2 and band ratio B1/B2, B1/B3, B1/B4, B2/B3, B2/B4 and B3/B4 are good spectral indicators; for gasoline, all spectral indicators have segmentation characteristics, with no good spectral indicators. The results show that the Landsat TM/ETM has the capability of detecting the oil slick thickness of heavy crude oil, light crude oil and diesel oil on the water surface, and thus can be used to estimate the oil spill volume on the water surface.

Key wordsoil slick thickness    spectral reflection    correlation coefficient    curve fitting    Landsat TM/ETM data
收稿日期: 2018-11-16      出版日期: 2019-12-03
:  TP79  
基金资助:中国石油“十三五”重大科技项目“海洋油气勘探开发工程关键技术”资助(2016A-10)
作者简介: 邢学文(1976-),男,高级工程师,研究方向为遥感在石油行业中的应用。Email: x5505@163.com。
引用本文:   
邢学文, 刘松, 钱凯俊. Landsat TM/ETM波段反射率与水面油膜厚度关系研究[J]. 国土资源遥感, 2019, 31(4): 69-78.
Xuewen XING, Song LIU, Kaijun QIAN. Study of relationship between thickness of oil slicks and band reflectance of Landsat TM/ETM. Remote Sensing for Land & Resources, 2019, 31(4): 69-78.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.04.10      或      https://www.gtzyyg.com/CN/Y2019/V31/I4/69
Fig.1  重原油、轻原油、柴油和汽油油膜在350~2 500 nm谱段范围的反射率光谱曲线
Fig.2  4种油品油膜厚度与不同波长反射率的相关性
Fig.3  重原油油膜厚度-TM波段反射率估算模型
Fig.4  轻原油油膜厚度-TM波段反射率估算模型
Fig.5  柴油油膜厚度-TM波段反射率估算模型
Fig.6  汽油油膜厚度-TM波段反射率估算模型
Fig.7  重原油油膜厚度-TM波段比值估算模型
Fig.8  轻原油油膜厚度-TM波段比值估算模型
Fig.9  柴油油膜厚度-TM波段比值估算模型
Fig.10  汽油油膜厚度-TM波段比值估算模型
[1] 宋莎莎, 安伟, 李建伟 , 等. 海上溢油量评估方法研究综述[J]. 海岸工程, 2017,36(1):83-88.
Song S S, An W, Li J W , et al. Review on the methods for assessment of marine oil spill volume[J]. Coastal Engineering, 2017,36(1):83-88.
[2] 赵冬至, 丛丕福 . 海面溢油的可见光波段地物光谱特征研究[J]. 遥感技术与应用, 2000,15(3):160-164.
Zhao D Z, Cong P F . The research of visual light wave-band feature spectrum of sea-surface oil spill[J]. Remote Sensing Technology and Application, 2000,15(3):160-164.
[3] Svejkovsky J, Muskat J . Real-Time Detection of Oil Slick Thickness Patterns with a Portable Multispectral Sensor[R].U.S.Minerals Management Service Contract 0105CT39144 2006.
[4] Svejkovsky J, Muskat J, Mullin J. Mapping oil spill thickness with a portable multispectral aerial imager [C]//International Oil Spill Conference Proceedings, 2008: 131-136.
[5] Wettle M, Daniel P J, Logan G A , et al. Assessing the effect of hydrocarbon oil type and thickness on a remote sensing signal:A sensitivity study based on the optical properties of two different oil types and the HYMAP and Quickbird sensors[J]. Remote Sensing of Environment, 2009,113(9):2000-2010.
[6] 张永宁, 丁倩, 高超 , 等. 油膜波谱分析与遥感监测溢油[J]. 海洋环境科学, 2000,19(3):5-10.
Zhang Y N, Ding Q, Gao C , et al. Analysis of oil film spectrum and monitoring oil spilled by remote sensing[J]. Marine Environment Science, 2000,19(3):5-10.
[7] 肖剑伟, 田庆久 . 基于生物光学模型的水面薄油膜厚度的高光谱遥感反演实验研究[J]. 光谱学与光谱分析, 2012,32(1):183-187.
Xiao J W, Tian Q J . Experimental study of offshore oil thickness hyperspectral inversion based on bio-optical model[J]. Spectroscopy and Spectral Analysis, 2012,32(1):183-187.
[8] 叶舟, 刘力, 魏传新 , 等. 多种薄油膜光谱反射率特性外场测试方法及结果分析[J]. 光谱学与光谱分析, 2015,35(6):1695-1699.
Ye Z, Liu L, Wei C X , et al. Experimental methods and result analysis of a variety of spectral reflectance properties of the thin oil film[J]. Spectroscopy and Spectral Analysis, 2015,35(6):1695-1699.
[9] 刘旭拢, 邓孺孺, 秦雁 , 等. 水面浮油膜光谱测量及光谱特征分析[J]. 海洋科学, 2016,40(10):63-70.
Liu X L, Deng R R, Qin Y , et al. Spectral measurement and characteristic analysis of an oil film floating above water[J]. Marine Sciences, 2016,40(10):63-70.
[10] 孙鹏, 宋梅萍, 安居白 . 基于光谱曲线响应特性的油膜厚度估计模型分析[J]. 光谱学与光谱分析, 2013,33(7):1881-1885.
Sun P, Song M P, An J B . Study of prediction for oil thickness based on spectral curve[J]. Spectroscopy and Spectral Analysis, 2013,33(7):1881-1885.
[11] 臧影 . 高光谱溢油图像波段选择在油膜厚度估算中的应用[D]. 大连:大连海事大学, 2010.
Zang Y . Application of Hyperspectral Band Selection in Detection of Oil Slick Thickness[D]. Dalian:Dalian Maritime University, 2010.
[12] 兰国新 . 海上溢油遥感光谱信息挖掘与应用研究[D]. 大连:大连海事大学, 2012.
Lan G X . Study on Spectral Information Mining and Application for Oil Spill Remote Sensing Monitoring[D]. Dalian:Dalian Maritime University, 2012.
[13] 刘丙新, 李颖, 张至达 , 等. 不同厚度海上油膜高光谱遥感波段敏感性研究[J]. 东北师大学报(自然科学版), 2015,47(4):156-160.
Liu B X, Li Y, Zhang Z D , et al. Study on the sensitivity of hyperspectral imagery to detect oil film with different thickness[J]. Journal of Northeast Normal University (Natural Science Edition), 2015,47(4):156-160.
[14] 邢学文, 刘松, 许德刚 , 等. 基于偏最小二乘法的高光谱水面油膜厚度估算[J]. 国土资源遥感, 2019,31(2):111-117.doi: 10.6046/gtzyyg.2019.02.16.
Xing X W, Liu S, Xu D G , et al. Thickness estimation of crude oil slick by hyperspectral data based on partial least squares regression method[J]. Remote Sensing for Land and Resources, 2019,31(2):111-117.doi: 10.6046/gtzyyg.2019.02.16.
[15] Winkelmann K . On the Applicability of Imaging Spectrometry for the Detection and Investigation of Contaminated Sites with Particular Consideration Given to the Detection of Fuel Hydrocarbon Contaminants in Soil[D]. Berlin:BTU Cottbus, 2005.
[1] 潘建平, 徐永杰, 李明明, 胡勇, 王春晓. 结合相关系数和特征分析的植被区域自动变化检测研发[J]. 自然资源遥感, 2022, 34(1): 67-75.
[2] 吴霞, 王长军, 樊丽琴, 李磊. 基于多光谱遥感的盐渍化评价指数对宁夏银北灌区土壤盐度预测的适用性分析[J]. 国土资源遥感, 2021, 33(2): 124-133.
[3] 邢学文, 刘松, 许德刚, 钱凯俊. 基于偏最小二乘法的高光谱水面油膜厚度估算[J]. 国土资源遥感, 2019, 31(2): 111-117.
[4] 张雅莉, 塔西甫拉提·特依拜, 阿尔达克·克里木, 张东, 依力亚斯江·努尔麦麦提, 张飞. 基于Landsat8 OLI影像光谱的土壤盐分估算模型研究[J]. 国土资源遥感, 2018, 30(1): 87-94.
[5] 董安国, 龚文娟, 韩雪. 基于线性表示的高光谱影像波段选择算法[J]. 国土资源遥感, 2017, 29(4): 39-42.
[6] 杜守基, 邹峥嵘, 张云生, 张明磊. L0级机载三线阵影像连接点自动提取[J]. 国土资源遥感, 2017, 29(1): 65-70.
[7] 许章华, 刘健, 陈崇成, 余坤勇, 黄旭影, 王美雅. 松毛虫危害下的马尾松林冠层光谱特征可辨性分析[J]. 国土资源遥感, 2016, 28(2): 41-47.
[8] 王晓东, 何浩, 侯东, 孙冠楠, 朱文泉. 基于TM图像的农业区域植被覆盖变化检测 [J]. 国土资源遥感, 2012, 24(2): 92-97.
[9] 陈蕾, 谢健, 彭晓鹃, 李振, 娄全胜, 张晓浩, 杨帆. 珠江口海水透明度与光谱相关关系研究[J]. 国土资源遥感, 2011, 23(3): 151-155.
[10] 孙中昶, 郭华东, 焦孟梅, 刘广. 机载双天线InSAR复图像自动配准研究[J]. 国土资源遥感, 2010, 22(1): 24-29.
[11] 刘良明, 文雄飞, 余凡, 张丰, 陈晶.  MODIS数据Bowtie效应快速消除算法研究[J]. 国土资源遥感, 2007, 19(2): 10-15.
[12] 万余庆, 张凤丽, 闫永忠. 利用细分光谱仪数据分析水体泥土含量的方法研究[J]. 国土资源遥感, 2002, 14(2): 51-55.
[13] 乐华福, 林寿仁, 赵太初, 陈立娣. 近海Ⅱ类海水反射率与表面悬浮泥沙相关性的研究[J]. 国土资源遥感, 2000, 12(1): 34-38,43.
[14] 陈彩芬, 舒宁. SAR影像与TM影像的几种融合处理方法[J]. 国土资源遥感, 1999, 11(4): 53-57.
[15] 张春桂. 福建省海岸带泥沙分布的气象卫星遥感监测[J]. 国土资源遥感, 1999, 11(2): 25-28,42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发