Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (4): 104-111    DOI: 10.6046/gtzyyg.2019.04.14
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于地貌视角的喀斯特流域水系分维估算方法适应性分析
安全1,3, 贺中华1,2,3(), 赵翠薇1, 梁虹1,3, 焦树林1,3, 杨朝晖4
1. 贵州师范大学地理与环境科学学院,贵阳 550001
2. 贵州师范大学国家喀斯特石漠化防治工程技术研究中心,贵阳 550001
3. 贵州省山地资源与环境遥感应用重点实验室,贵阳 550001
4. 贵州省应急管理厅,贵阳 550001
GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area
Quan AN1,3, Zhonghua HE1,2,3(), Cuiwei ZHAO1, Hong LIANG1,3, Shulin JIAO1,3, Chaohui YANG4
1. School of Geographic and Environmental Science, Guizhou Normal University, Guiyang 550001, China
2. State Engineering Technology Institute For Karst Desertification Control, Guizhou Normal University, Guiyang 550001,China
3. Key Laboratory of Remote Sensing Application on Mountain Resources and Environment in Guizhou Province, Guiyang 550001, China
4. Department of Emergency Management of Guizhou Province, Guiyang 550001, China
全文: PDF(1802 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

水系分维是地貌发育程度的定量表示方法之一。水系分维的研究对于喀斯特筑坝流域地貌的产汇流机制研究具有重要意义。以1:5万地形图提取水系和30 m空间分辨率ASTER-GDEM为数据源,利用基于ArcGIS10.2的Horton-Strahler理论、水系栅格法、渔网法估算黔中筑坝工程区龙场桥流域水系分维,探讨筑坝区地貌发育对流域水文特征的影响。结果表明: 喀斯特地区复杂地貌组合结构下不同方法、不同数据源估算的水系分维相差较大。Horton-Strahler法、水系栅格法、渔网法估算1:5万地形图提取水系分维值分别为1.69,1,53和1.54; 估算ASTER-GDEM提取水系的分维值分别为0.66,1.59和1.60。其中Horton-Strahler法估算分维值差别显著,差值达到1.03。综合分析Horton-Strahler理论、水系栅格法、渔网法估算喀斯特筑坝区不同数据源水系分维与实际地貌发育的关系可知,渔网法估算的水系分维与研究区实际地貌现状最为吻合。根据渔网估算的水系分维可知,研究区利用渔网法估算的1:5万地形图提取水系分维值为1.54,通过ASTER-GDEM提取水系估算的分维值约为1.60,这说明研究区处于地貌发育阶段的幼年晚期、壮年期早期,此结果与研究区实际发育地貌吻合。此外3种方法估算喀斯特筑坝流域的水系分维精度排序为: 渔网法>水系栅格法>Horton-Strahler法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安全
贺中华
赵翠薇
梁虹
焦树林
杨朝晖
关键词 GIS喀斯特地貌ASTER-GDEM分维精度    
Abstract

The fractal dimension of water system is one of the quantitative representation methods for determining geomorphic development degree. The study of water system fractal dimension is of great significance for the investigation of the sedimentation mechanism of karst dam basin landform. Advanced space borne thermal emission and reflection radio mater global digital elevation model (ASTER-GDEM) was used as a data source for extracting water system and 30 m resolution ASTER-GDEM. Based on the ArcGIS 10.2, Horton-Strahler theory, water grid method and fishing net method, the authors estimated the water system fractal dimension of Longchangqiao watershed in the dam construction area of Yuzhong, and explore the influence of landform development on the hydrological characteristics of the basin in dam construction. Some conclusions have been reached: The fractal dimensions of the water system estimated by different methods and different data sources under the complex geomorphic structure of the karst area are quite different. The fractal dimension values of the extracted water system of 1.50 million topographic maps estimated by the Horton-Strahler method, the water grid method and the fishing net method are 1.69, 1, 53, 1.54 respectively. The fractal dimensions estimated by 30 m resolution ASTER-GDEM extraction water system are 0.66, 1.59, 1.60. Among them, the fractal dimension values estimated by the Horton-Strahler method are significantly different, with the difference reaching 1.03. Comprehensive analysis of Horton-Strahler theory, water grid method and fishing net method for estimating the relationship between the fractal dimension of different data source water systems and actual landform development in karst dam construction area shows that the water system fractal dimension estimated by the fishing net method and the actual landform status of the study area are most consistent with each other. According to the estimation of the water system estimated by the fishing net, the fractal dimension of the extracted water system estimated by the fishing net method is 1.54, and the fractal dimension estimated by the 30 m resolution ASTER-GDEM extraction system is about 1.60, which suggests that the study area is at the late stage of the young period and the early stage of mature period in geomorphological development, and the results coincide with the actual development of the study area. In addition, three methods were used to estimate the fractal dimension accuracy of the water system in the karst dam basin, and the results show the following order: fishnet method>water grid method>Horton-Strahler method.

Key wordsGIS    karst landform    ASTER-GDEM    fractal dimension    adaptive analysis
收稿日期: 2018-11-23      出版日期: 2019-12-03
:  P33  
基金资助:国家自然科学基金项目“中国南方喀斯特流域结构的水文干旱驱动机制研究”(41471032);“喀斯特筑坝河流水安全与调控对策”(u1612441);贵州省国内一流学科建设项目“面向对象技术与多源遥感协同的喀斯特农业干旱驱动机制及其专家决策预警研究——以贵州省为例”(KT201402);贵州省科技厅自然科研基金项目“基于高光谱技术湖泊富营养化遥感监测机理研究——以贵阳市两湖一库为示范区”(黔科合J字[2010]2026号);“喀斯特“生态水”遥感定量研究”(黔科合J字[2013]2208号);贵州师范大学2015年博士科研启动项目“基于超光谱遥感的喀斯特湖泊水质评估模型研究——以贵阳市“两湖一库”为例”共同资助
通讯作者: 贺中华
作者简介: 安 全(1991-),男,硕士研究生,主要从事喀斯特水文水资源GIS、遥感以及产汇流模拟方向研究。Email: 932599540@qq.com。
引用本文:   
安全, 贺中华, 赵翠薇, 梁虹, 焦树林, 杨朝晖. 基于地貌视角的喀斯特流域水系分维估算方法适应性分析[J]. 国土资源遥感, 2019, 31(4): 104-111.
Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.04.14      或      https://www.gtzyyg.com/CN/Y2019/V31/I4/104
Fig.1  研究区概况图
河流
等级
数目/条 平均长
度/km
分叉比/
Rx
河长比/
RL
lgRx lgRL
1 1 557 1 191.470
1.981 0.559 0.297 -0.252
2 786 666.210
2.005 0.560 0.302 -0.520
3 392 373.230
3.187 0.458 0.503 -0.298
4 123 171.010
2.617 0.481 0.418 -0.379
5 47 82.330
5.875 0.395 0.769 -0.114
6 8 32.520
Tab.1  基于地形图水系的Horton-Strahler法参数
河流
等级
数目/条 平均长
度/km
Rb RL lgRb lgRL
1 877 1 363.910
2.016 0.486 0.305 -0.516
2 435 663.030
2.112 0.464 0.325 -0.489
3 206 307.920
1.392 0.622 0.144 -0.843
4 148 191.470
2.056 0.526 0.313 -0.505
5 72 100.750
72.000 0.028 1.857 0.269
6 1 2.850
Tab.2  基于ASTER-GDEM水系的Horton-Strahler法参数
1:5万栅格水系法 30 m空间分辨率ASTER-GDEM栅格水系法
栅格边长r 栅格数目N(r) Lgr LgN(r) 栅格边长r 栅格数目N(r) Lgr LgN(r)
500 4 975 2.699 3.697 500 5 754 2.699 3.760
1 000 2 161 3.000 3.335 1 000 2 614 3.000 3.417
1 500 1 225 3.176 3.088 1 500 1 526 3.176 3.184
2 000 810 3.301 2.908 2 000 1 004 3.301 3.002
2 500 569 3.398 2.755 2 500 675 3.398 2.829
3 000 424 3.477 2.627 3 000 491 3.477 2.691
3 500 328 3.544 2.516 3 500 374 3.544 2.573
4 000 269 3.602 2.430 4 000 295 3.602 2.470
4 500 216 3.653 2.334 4 500 244 3.653 2.387
5 000 187 3.699 2.272 5 000 205 3.699 2.312
5 500 161 3.740 2.207 5 500 163 3.740 2.212
6 000 143 3.778 2.155 6 000 146 3.778 2.164
6 500 117 3.813 2.068 6 500 131 3.813 2.117
7 000 106 3.845 2.025 7 000 114 3.845 2.057
7 500 93 3.875 1.968 7 500 100 3.875 2.000
8 000 85 3.903 1.929 8 000 90 3.903 1.954
8 500 78 3.929 1.892 8 500 79 3.929 1.898
9 000 70 3.954 1.845 9 000 76 3.954 1.881
9 500 65 3.978 1.813 9 500 69 3.978 1.839
10 000 59 4.000 1.771 10 000 64 4.000 1.806
Tab.3  地形图水系与ASTER-GDEM水系栅格参数
地形图水系渔网法 ASTER-GDEM水系渔网法
栅格边长r 栅格数目N(r) Lgr LgN(r) 栅格边长r 栅格数目N(r) Lgr LgN(r)
500 5 023 2.699 3.701 500 5 723 2.699 3.758
1 000 2 169 3.000 3.336 1 000 2 574 3.000 3.411
1 500 1 238 3.176 3.093 1 500 1 561 3.176 3.193
2 000 800 3.301 2.903 2 000 996 3.301 2.998
2 500 566 3.398 2.753 2 500 686 3.398 2.836
3 000 427 3.477 2.630 3 000 491 3.477 2.691
3 500 322 3.544 2.508 3 500 373 3.544 2.572
4 000 264 3.602 2.422 4 000 295 3.602 2.470
4 500 221 3.653 2.344 4 500 238 3.653 2.377
5 000 177 3.699 2.248 5 000 200 3.699 2.301
5 500 154 3.740 2.188 5 500 172 3.740 2.236
6 000 131 3.778 2.117 6 000 143 3.778 2.155
6 500 121 3.813 2.083 6 500 126 3.813 2.100
7 000 101 3.845 2.004 7 000 113 3.845 2.053
7 500 92 3.875 1.964 7 500 101 3.875 2.004
8 000 80 3.903 1.903 8 000 90 3.903 1.954
8 500 74 3.929 1.869 8 500 82 3.929 1.914
9 000 68 3.954 1.833 9 000 71 3.954 1.851
9 500 64 3.978 1.806 9 500 65 3.978 1.813
10 000 57 4.000 1.756 10 000 61 4.000 1.785
Tab.4  地形图水系与ASTER-GDEM渔网法参数
参数 地形图水系 ASTER-GDEM水系
Horton-
Strahler法
栅格水
系法
渔网
Horton-
Strahler法
栅格水
系法
渔网
分维值 1.69 1.53 1.54 0.66 1.59 1.60
R2 0.996 6 0.996 4 0.994 1 0.993 4
Tab.5  不同方法提取地形图水系与ASTER-GDEM分维值对比表
Fig.2  研究区各流域地貌类型与山体阴影图
流域 地貌
类型
面积/
km2
占向阳流
域比例
占研究
区比例
成因类型
向阳流域 K化低山谷地 29.46 3.54 0.72 F
K化中山谷地 59.01 7.09 1.45 K2
峰丛谷地 193.88 23.31 4.76 K1,K2
峰丛洼地 60.94 7.33 1.5 K2
峰林溶原(盆地) 173.25 20.83 4.25 K1、K2
浅切中山 316.39 38.04 7.77 F
阳长流域 K化中山谷地 427.07 26.75 10.48 F,K1,K2
峰丛谷地 757.33 47.43 18.59 K1,K2
峰丛洼地 185.6 11.62 4.56 K1,K2
峰林溶原(盆地) 128.82 8.07 3.16 K1,K2
浅切中山 102.38 6.41 2.51 F
深切中山 36.65 3.01 0.9 F
龙场桥流域 K化低山谷地 16.88 1.03 0.41 K2
K化中山谷地 711.24 43.23 17.46 K1,K2
峰丛谷地 196.62 11.95 4.83 K1,K2
峰丛洼地 676.79 41.14 16.61 K1,K2
深切中山 43.53 2.64 1.07 F
Tab.6  不同流域地貌发育参数及其面积比例
[1] 何隆华, 赵宏 . 水系的分形维数及其含义[J]. 地理科学, 1996,16(2):124-128.
He L H, Zhao H . Fractal dimension of water system and its implications[J]. Geographical Science, 1996,16(2):124-128.
[2] 郭忆, 毕硕本, 闫业超 , 等. 拉林河流域水系分维研究[J]. 测绘科学, 2015,40(4):63-66,140.
Guo Y, Bi S B, Yan Y C , et al. Study on fractal dimension of water system in Lalin River Basin[J]. Journal of Surveying and Mapping, 2015,40(4):63-66,140.
[3] 贺晓晖, 张树君, 胡志博 , 等. 基于DEM的南水北调中线水源区水系分维估算[J].测绘与空间地理信息,2016(9):92-95.
He X H, Zhang S J, Hu Z B , et al. Estimation of fractal dimension of water system in the Middle Route of South-to-North Water Transfer Project based on DEM[J].Surveying and Spatial Geography Information,2016(9):92-95.
[4] 吕爱锋, 陈嘻, 王纲胜 . 基于DEM的流域水系分维估算方法探讨[J]. 干旱区地理, 2002,25(4):315-320.
Lv A F, Chen X, Wang G S . DEM-based method for estimating fractal dimension of watershed system[J]. Arid Land Geography, 2002,25(4):315-320.
[5] 江滔, 武伟, 刘洪斌 . 基于DEM的重庆长江流域水系分维估算[J]. 中国农学通报, 2010,26(15):365-368.
Jiang T, Wu W, Liu H B . Estimation of fractal dimension of water system in the Yangtze River Basin of Chongqing based on DEM[J]. Chinese Agricultural Science Bulletin, 2010,26(15):365-368.
[6] 曹小敏, 罗明良, 刘承栩 . 基于ASTER-GDEM的延河流域水系分维特征分析[J]. 遥感信息, 2013,28(1):34-37.
Cao X M, Luo M L, Liu C Y . Analysis of fractal dimensions of the Yanhe River Basin based on ASTER-GDEM[J]. Remote Sensing Information, 2013,28(1):34-37.
[7] 郑楠炯, 周买春, 刘远 . 基于GIS的Horton水系分维值估算——以韩江流域为例[J].中国农村水利水电,2017(12):81-85.
Zheng N J, Zhou M C, Liu Y . Estimation of fractal dimension of Horton water system based on GIS——Taking Hanjiang River Basin as an example[J].China Rural Water and Hydropower,2017(12):81-85.
[8] 贺中华, 梁虹, 黄法苏 , 等. 基于DEM的喀斯特流域地貌发育影响因素分析[J]. 测绘科学, 2008,33(4):70-72.
He Z H, Liang H, Huang F S , et al. Analysis of influencing factors of geomorphological development in Karst basin based on DEM[J]. Journal of Surveying and Mapping, 2008,33(4):70-72.
[9] 原晓平, 刘少峰, 田贵中 , 等. 基于DEM的格尔木河流域水系分维分析[J]. 国土资源遥感, 2013,25(1):111-116.doi: 10.6046/gtzyyg.2013.01.20.
doi: 10.6046/gtzyyg.2013.01.20
Yuan X P, Liu S F, Tian G Z , et al. Fractal dimension analysis of the water system in the Golmud River Basin based on DEM[J]. Remote Sensing for Land and Resources, 2013,25(1):111-116.doi: 10.6046/gtzyyg.2013.01.20.
[10] 丰满, 张征, 朱凌 , 等. 基于DEM的滇池流域水系提取及分维值探讨[J]. 环境科学与技术, 2010,33(2):11-14.
Feng M, Zhang Z, Zhu L , et al. Extraction and fractal dimension of water system in Dianchi Lake Basin based on DEM[J]. Environmental Science and Technology, 2010,33(2):11-14.
[11] 王国重, 李中原, 屈建钢 , 等. 基于DEM的丹江口水库水源区水系分形特征研究[J].中国农村水利水电,2017(4):121-124.
Wang G Z, Li Z Y, Qu J G , et al. Fractal characteristics of water system in Danjiangkou Reservoir water source area based on DEM[J].China Rural Water and Hydropower,2017(4):121-124.
[12] 黄晶晶, 张卫华, 魏朝富 . 基于ArcGIS的丘陵山区局地水系提取及分维值估算[J].中国农村水利水电,2012(11):1-3.
Huang J J, Zhang W H, Wei C F . Extraction and fractal dimension estimation of local water system in Hilly Mountainous area based on ArcGIS[J].China Rural Water and Hydropower,2012(11):1-3.
[13] 黎武, 王汝兰, 徐珍 , 等. 基于DEM的延河流域河网水系分形特征研究[J]. 安徽农学通报, 2017,23(5):121-124.
Li W, Wang R L, Xu Z , et al. Fractal characteristics of river network in Yanhe River Basin based on DEM[J]. Anhui Agricultural Science Bulletin, 2017,23(5):121-124.
[14] 刘涓, 郑畅, 张卫华 , 等. 四川盆地丘陵山区局地水系分形分维研究[J]. 西南大学学报(自然科学版), 2012,34(3):76-82.
Liu J, Zheng C, Zhang W H , et al. Fractal dimension of local water system in hilly area of Sichuan Basin[J]. Journal of Southwest University(Natural Science), 2012,34(3):76-82.
[15] 陈彦光, 刘继生 . 水系结构的分形和分维——Horton水系定律的模型重建及其参数分析[J]. 地球科学进展, 2001,16(2):178-183.
Chen Y G, Liu J S . Fractal and fractal dimension of water system structure——model reconstruction and parameter analysis of Horton water system[J]. Advances in Earth Science, 2001,16(2):178-183.
[16] 王倩, 邹欣庆, 朱大奎 . 基于GIS技术的秦淮河流域水系分维研究[J]. 水科学进展, 2002,13(6):751-756.
Wang Q, Zhou X Q, Zhu D K . Study on fractal dimension of water system in Qinhuai River Basin based on GIS technology[J]. Advances in Water Science, 2002,13(6):751-756.
[17] 王林, 陈兴伟 . 基于DEM的流域水系分维计算与结果分析[J]. 地球信息科学学报, 2007,9(4):133-134.
Wang L, Chen X W . Fractal dimension calculation and results analysis of watershed system based on DEM[J]. Journal of Earth Information Science, 2007,9(4):133-134.
[18] 范林峰, 胡瑞林, 张小艳 , 等. 基于GIS和DEM的水系三维分形计盒维数的计算[J]. 地理与地理信息科学, 2012,28(6):28-30.
Fan L F, Hu R L, Zhang X Y , et al. Calculation of three-dimensional fractal box dimension of water system based on GIS and DEM[J]. Geography and Geography Information, 2012,28(6):28-30.
[19] 严宝文, 罗欢 . 泾、洛河水系与径流过程的分形特征及相互关系研究[J].中国农村水利水电,2017(7):116-119.
Yan B W, Luo H . Fractal characteristics and correlation of water system and runoff process in Handan and Luohe Rivers[J].China Rural Water and Hydropower,2017(7):116-119
[20] 杨秀春, 朱晓华 . 中国七大流域水系与洪涝的分维及其关系研究[J]. 灾害学, 2002,17(3):9-13.
Yang X C, Zhu X H . Study on the fractal dimension and relationship of water system and flood in seven large watersheds in China[J]. Journal of Catastrophology, 2002,17(3):9-13.
[21] 宋向阳, 吴发启, 赵龙山 , 等. 基于DEM的延河流域水文特征提取与分析[J]. 干旱地区农业研究, 2012,30(4):200-206.
Song X Y, Wu F Q, Zhao L S , et al. Extraction and analysis of hydrological characteristics in Yanhe River basin based on DEM[J]. Agriculture Research in the Arid Areas, 2012,30(4):200-206.
[22] 易卫华, 杨平 . 基于DEM数字河网提取时集水面积阈值的确定[J]. 江西水利科技, 2008,34(4):259-262.
Yi W H , Y P.Determination of the catchment area threshold based on DEM digital river network extraction[J]. Journal of Jiangxi Water Science and Technology, 2008,34(4):259-262.
[23] 张行南, 刘羽婷, 刘伯娟 . 基于地形带分类的最佳阈值与河网密度关系研究[J]. 长江科学院院报, 2014,31(4):17-20.
doi: 10.3969/j.issn.1001-5485.2014.04.0042014, 31(04):17-20
Zhang X N, Liu Y T, Liu B J . Research on the relationship between optimal threshold and river network density based on terrain classification[J]. Journal of Yangtze River Scientific Research Institute, 2014,31(4):17-20.
[24] 张树君, 朱勤东 . GIS环境下泾河流域水系特征的提取及探讨[J]. 人民黄河, 2014,36(10):55-57.
Zhang S J, Zhu Q D . Extraction and discussion of water system characteristics in the Weihe River Basin under GIS environment[J]. People’s Yellow River, 2014,36(10):55-57.
[25] 任娟, 杨武年, 许娟 . 基于GIS与DEM的岷江上游流域水系分维值计算[J].地理空间信息,2015(1):77-79.
Ren J, Yang W N, Xu J . Calculation of fractal dimension of water system in the upper reaches of Minjiang River based on GIS and DEM[J].Geospatial Information,2015(1):77-79.
[26] 芮孝芳 . 水文学原理[M]. 北京: 水利水电出版社, 2004.
Rui X F. Principles of Hydrology[M]. Beijing: Water Resources and Hydropower Press, 2004.
[27] 周忠发, 朱昌丽, 谭玮颐 , 等. 基于空间开发适宜性评价的石漠化地区可持续发展研究——以贵州省盘州市为例[J]. 贵州师范大学学报(自然科学版), 2019,37(1):1-9.
Zhou Z F, Zhu C L, Tan W Y . Study on sustainable development of rocky desertification region based on suitability evaluation of spatial development——Taking Panzhou City of Guizhou Province as an example[J]. Journal of Guizhou Normal University(Natural Science), 2019,37(1):1-9.
[28] 罗娅, 刘莉, 王青 , 等. 应用30 m ASTER GDEM数据估算贵州县域地表河网密度的适应性[J].贵州师范大学学报(自然科学版),2017(6):9-15.
Luo Y, Liu L, Wang Q , et al. Adaptability of 30 meters ASTER GDEM data for estimating county-level surface drainage network density of Guizhou Province[J].Journal of Guizhou Normal University(Natural Sciences),2017(6):9-15.
[29] 钱莉莉, 贺中华, 梁虹 , 等. 基于降水Z指数的贵州省农业干旱时空演化特征[J]. 贵州师范大学学报(自然科学版), 2019,37(1):10-14.
Qian L L, He Z H, Liang H , et al. Spatial-temporal evolution characteristics of agricultural drought based on precipitation Z index in Guizhou[J]. Journal of Guizhou Normal University(Natural Sciences), 2019,37(1):10-14.
[1] 武艺杰, 孔雪松. 江苏省“生态-农业-建设”用地空间格局模拟及发展模式选择[J]. 自然资源遥感, 2022, 34(1): 238-248.
[2] 李东, 唐诚, 邹涛, 侯西勇. 近海人工鱼礁水下物理状态探测与评估[J]. 自然资源遥感, 2022, 34(1): 27-33.
[3] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[4] 于冰, 谭青雪, 刘国祥, 刘福臻, 周志伟, 何智勇. 高分辨率TerraSAR-X时序差分干涉沉降监测及精度验证[J]. 自然资源遥感, 2021, 33(4): 26-33.
[5] 王爽, 张磊, 张俊勇, 王一乐. GIS在全民健身中的应用特征研究[J]. 自然资源遥感, 2021, 33(4): 265-271.
[6] 王镕, 赵红莉, 蒋云钟, 何毅, 段浩. 月尺度农作物提取中GF-1 WFV纹理特征的应用及分析[J]. 自然资源遥感, 2021, 33(3): 72-79.
[7] 陈超, 陈慧欣, 陈东, 张自力, 张旭锋, 庄悦, 褚衍丽, 陈建裕, 郑红. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 国土资源遥感, 2021, 33(2): 141-152.
[8] 范嘉智, 罗宇, 谭诗琪, 马雯, 张弘豪, 刘富来. 基于FY-3C/MWRI的湖南省地表温度遥感反演评价[J]. 国土资源遥感, 2021, 33(1): 249-255.
[9] 姚昆, 张存杰, 何磊, 李玉霞, 李小菊. 雅砻江中上游流域生态环境脆弱性动态评价及预测[J]. 国土资源遥感, 2020, 32(4): 199-208.
[10] 王懿哲, 刘国, 郭莉, 赵世湖, 张学利. 基于高分一号WFV数据的正射校正与真彩色合成技术——以中巴经济走廊为例[J]. 国土资源遥感, 2020, 32(2): 213-218.
[11] 王永全, 李清泉, 汪驰升, 朱家松, 王新雨. 基于系留无人机的应急测绘技术应用[J]. 国土资源遥感, 2020, 32(1): 1-6.
[12] 宋仁波, 朱瑜馨, 丁上珊, 贺巧宁, 王细元, 王月香. 基于GIS空间分析的任意多边形骨架线自动提取方法[J]. 国土资源遥感, 2020, 32(1): 51-59.
[13] 施益强, 邓秋琴, 吴君, 王坚. 厦门市MODIS气溶胶光学厚度与空气质量指数的回归分析[J]. 国土资源遥感, 2020, 32(1): 106-114.
[14] 梅昭容, 李云驹, 康翔, 魏善宝, 潘剑君. 基于移动窗口分析法的矿区景观格局时空演变研究[J]. 国土资源遥感, 2019, 31(4): 60-68.
[15] 李冲, 李昊霖, 佘毅. 基于多源遥感数据的地理信息质量检测[J]. 国土资源遥感, 2019, 31(4): 258-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发