Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (4): 120-127    DOI: 10.6046/gtzyyg.2019.04.16
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于烃类微渗漏的油气异常信息提取及远景区预测——以中非Salamat盆地为例
肖晨超1,2, 吴小娟3(), 汪大明4, 褚永彬3
1. 自然资源部国土卫星遥感应用中心,北京 100048
2. 中国自然资源航空物探遥感中心,北京 100083
3. 成都信息工程大学资源环境学院,成都 610225
4. 中国地质调查局,北京 100037
Oil-gas information extraction and prospective area prediction based on hydrocarbon microseepage theory: A case study of Salamat Basin in Central Africa
Chenchao XIAO1,2, Xiaojuan WU3(), Daming WANG4, Yongbin CHU3
1. Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China
2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083,China
3. College of Resources and Environment, Chengdu University of Information Technology,Chengdu 610225, China
4. China Geological Survey, Beijing 100037, China
全文: PDF(4669 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

油气田中烃类物质渗漏引起的物质变异可以通过遥感手段进行探测。与传统的油气勘探方法相比,遥感技术具有无侵入、大面积、高效、低成本等特点,尤其在地形、地貌环境复杂险恶的地区优势明显。为进一步研究遥感油气探测技术,以烃类微渗漏理论为基础,采用去串扰、大气校正、波段比值、主成分分析和单窗算法处理中非Salamat盆地的ASTER数据,提取了黏土类、碳酸盐类、二价铁离子类矿物蚀变信息和亮度温度值。结果表明,上述几种矿物强蚀变信息和地表高温异常信息主要分布在研究区中部和南部,即中部隆起带和南部洼陷带含油气可能性高。结合已有地质、地震和物化探资料,圈定了5处油气远景区,可为下一步油气勘探提供参考依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖晨超
吴小娟
汪大明
褚永彬
关键词 烃类微渗漏矿物蚀变信息亮度温度油气远景区预测ASTER数据Salamat盆地    
Abstract

Anomaly information caused by hydrocarbon seepage in oil-gas fields can be detected by remote sensing technology. Compared with traditional oil and gas exploration methods,remote sensing technology has many advantages in getting information from long range, large-area mapping, high efficiency and low cost, especially in areas with complex terrain and geomorphological environment. Based on the hydrocarbon microseepage theory, the mineral alteration information such as clays, carbonates, ferrous ion and brightness temperature were respectively extracted by methods of crosstalk correction, atmospheric correction, band ratio, principal component analysis and mono-window algorithm with the ASTER data in Salamat Basin of Central Africa. The results show that the above-mentioned several types of strong mineral alteration information and high temperature anomaly information are mainly distributed in the central and southern part of the study area, namely, the central uplift zone and the southern depression zone are highly likely to contain hydrocarbons. Combined with existing geological, seismic, geophysical and geochemical data, five oil-gas prospecting areas were delineated, which can provide theoretical direction for the further oil-gas exploration.

Key wordshydrocarbon microseepage    mineral alteration information    brightness temperature    oil-gas target prediction    ASTER data    Salamat Basin
收稿日期: 2018-10-11      出版日期: 2019-12-03
:  TP79  
基金资助:自然资源部公益性行业科研专项“国产业务卫星遥感地质信息产品研发与服务”(201511078);成都信息工程大学引进人才启动项目“基于高光谱遥感数据的油气微渗漏异常信息提取关键技术研究”共同资助(KYTZ201745)
通讯作者: 吴小娟
作者简介: 肖晨超(1982-),男,博士,主要从事国产卫星业务化应用、灾害遥感、3S集成应用方面研究。Email: xcc_surpass@qq.com。
引用本文:   
肖晨超, 吴小娟, 汪大明, 褚永彬. 基于烃类微渗漏的油气异常信息提取及远景区预测——以中非Salamat盆地为例[J]. 国土资源遥感, 2019, 31(4): 120-127.
Chenchao XIAO, Xiaojuan WU, Daming WANG, Yongbin CHU. Oil-gas information extraction and prospective area prediction based on hydrocarbon microseepage theory: A case study of Salamat Basin in Central Africa. Remote Sensing for Land & Resources, 2019, 31(4): 120-127.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.04.16      或      https://www.gtzyyg.com/CN/Y2019/V31/I4/120
Fig.1  研究区位置及Salamat盆地构造示意图
Fig.2  油气藏烃类微渗漏模型[18]
Fig.3  黏土类、碳酸盐类和二价铁离子类矿物标准波谱曲线(USGS)
Fig.4  研究区ASTER B3(R),B2(G),B1(B)假彩色合成图像
干扰 去除方法
阴影 B9/B1
B1高端切割
植被 NDVI=(B3-B2)/(B3+B2)
水体 MNDWI=(B1-B3)/(B1+B3)
Tab.1  干扰信息去除方法
Fig.5  研究区黏土类、碳酸盐类和二价铁离子类矿物蚀变异常信息
Fig.6  研究区亮度温度分布
Fig.7  亮度温度数值统计
Fig.8  黏土类、二价铁离子类矿物蚀变信息与亮度温度信息假彩色合成影像及油气远景区预测
[1] 赵健, 童晓光, 肖坤叶 , 等. 乍得Bongor盆地储层沉积成岩特征及其主控因素[J]. 吉林大学学报(地球科学版), 2013,43(3):649-658.
Zhao J, Tong X G, Xiao K Y , et al. Sedimentary-diagenetic characteristics of reservoir sandstone and their controlling factors in Bongor Basin,Chad[J]. Journal of Jilin University (Earth Science Edition), 2013,43(3):649-658.
[2] 程顶胜, 窦立荣, 王景春 , 等. 乍得Bongor盆地天然气地球化学特征及成因[J]. 地学前缘, 2018,25(2):112-120.
Cheng D S, Dou L R, Wang J C , et al. Geochemical characteristics and genesis of natural gas in the Bongor Basin[J]. Earth Science Frontiers, 2018,25(2):112-120.
[3] 肖坤叶, 赵健, 余朝华 , 等. 中非裂谷系Bongor盆地强反转裂谷构造特征及其对油气成藏的影响[J]. 地学前缘, 2014,21(3):172-180.
Xiao K Y, Zhao J, Yu C H , et al. Structural characteristics of intensively inversed Bongor Basin in CARS and their impacts on hydrocarbon accumulation[J]. Earth Science Frontiers, 2014,21(3):172-180.
[4] 张艺琼, 何登发, 童晓光 . 中非剪切带含油气盆地成因机制与构造类型[J]. 石油学报, 2015,36(10):1234-1247.
Zhang Y Q, He D F, Tong X G . Genetic mechanisms and tectonic types of petroliferous basins in the Central Africa Shear Zone[J]. Acta Petrolei Sinica, 2015,36(10):1234-1247.
[5] 窦立荣, 王景春, 王仁冲 , 等. 中非裂谷系前寒武系基岩油气成藏组合[J]. 地学前缘, 2018,25(2):15-23.
Dou L R, Wang J C, Wang R C , et al. The Precambrian basement play in the Central African Rift System[J]. Earth Science Frontiers, 2018,25(2):15-23.
[6] Yang H, Zhang J, van der Meer F ,et al.Geochemistry and field spectrometry for detecting hydrocarbon miscro-seepage[J]. Terra Nova, 1998,10(5):231-235.
[7] Tedesco S A . Surface Geochemistry in Petroleum Exploration[M]. New York:Chapman and Hall, 1995.
[8] Schumacher D . Hydrocarbon-induced alteration of soils and sediments[M] //Schumacher D,Abrams M A.Hydrocarbon migration and its near-surface expression.Oklahoma:AAPG Memoir, 1996,66:71-89.
[9] 王福印 . 油气微渗漏遥感影像异常形成的化学机理[J]. 国土资源遥感, 1993,5(1):59-62.doi: 10.6046/gtzyyg.1993.01.11.
doi: 10.6046/gtzyyg.1993.01.11
Wang F Y . Chemical mechanism of image anomalies formed by oil and gas micro-seepage[J]. Remote Sensing for Land and Resources, 1993,5(1):59-62.doi: 10.6046/gtzyyg.1993.01.11.
[10] 申晋利, 丁树柏, 齐小平 , 等. 烃类微渗漏现象遥感检测研究进展[J]. 国土资源遥感, 2010,22(3):7-11.doi: 10.6046/gtzyyg.2010.03.02.
doi: 10.6046/gtzyyg.2010.03.02
Shen J L, Ding S B, Qi X P , et al. The progress of remote sensing technology in the detection of hydrocarbon micro-seepage[J]. Remote Sensing for Land and Resources, 2010,22(3):7-11.doi: 10.6046/gtzyyg.2010.03.02.
[11] 黄秀华, 李正文, 关燕宁 , 等. 热红外遥感找油的时效性研究[J]. 遥感学报, 2003,7(2):142-145.
doi: 10.11834/jrs.20030211
Huang X H, Li Z W, Guan Y N , et al. Temporal effectiveness of thermal infra-red remote sensing applied to oil-gas exploration[J]. Journal of Remote Sensing, 2003,7(2):142-145.
[12] 汤玉平, 王国建, 程同金 . 烃类垂向微渗漏理论研究现状及发展趋势[J]. 物探与化探, 2008,32(5):465-469.
Tang Y P, Wang G J, Cheng T J . Present research situation and development trend of hydrocarbon vertical micro-seepage theory[J]. Geophysical and Geochemical Exploration, 2008,32(5):465-469.
[13] 李倩倩, 陈小梅, 刘幸 , 等. 油气微渗漏区蚀变矿物含量与光谱之间的定量分析[J]. 光谱学与光谱分析, 2013,33(12):3318-3320.
Li Q Q, Chen X M, Liu X , et al. Quantitative analysis of content and spectrum of altered mineral in the oil and gas microseepage area[J]. Spectroscopy and Spectral Analysis, 2013,33(12):3318-3320.
[14] 周子勇 . 高光谱遥感油气勘探进展[J]. 遥感技术与应用, 2014,29(2):352-361.
doi: 10.11873j.issn.1004-0323.2014.2.0352
Zhou Z Y . Progress in hyperspectral remote sensing for petroleum prospecting[J]. Remote Sensing Technology and Application, 2014,29(2):352-361.
[15] 胡畔, 田庆久, 闫柏琨 . 柴达木盆地烃蚀变矿物高光谱遥感识别研究[J]. 国土资源遥感, 2009,21(2):54-61.doi: 10.6046/gtzyyg.2009.02.12.
doi: 10.6046/gtzyyg.2009.02.12
Hu P, Tian Q J, Yan B K . The application of hyperspectral remote sensing to the identification of hydrocarbon alteration minerals in Qaidam Basin[J]. Remote Sensing for Land and Resources, 2009,21(2):54-61.doi: 10.6046/gtzyyg.2009.02.12.
[16] 杨达昌, 陈洁, 高子弘 , 等. 天宫一号高光谱数据烃类微渗漏信息提取[J]. 国土资源遥感, 2018,30(2):107-113.doi: 10.6046/gtzyyg.2018.02.15.
Yang D C, Chen J, Gao Z H , et al. Extraction of hydrocarbon micro-seepage information based on TG-1 hyperspectral data[J]. Remote Sensing for Land and Resources, 2018,30(2):107-113.doi: 10.6046/gtzyyg.2018.02.15.
[17] 章桂芳, 王远华, 郑卓 . 基于ASTER数据的烃蚀变信息增强与提取[J]. 中山大学学报(自然科学版), 2014,53(6):78-84.
Zhang G F, Wang Y H, Zheng Z . The information enhancement and interpretation of hydrocarbon microseepage induced minerals based on ASTER data[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014,53(6):78-84.
[18] 朱振海 . 油气藏烃类微渗漏理论及遥感油气资源探测的机理研究[J]. 遥感技术与应用, 1994,9(1):1-10.
Zhu Z H . Hydrocarbon microseepage theory and oil-gas reservoir detecting by remote sensing[J]. Remote Sensing Technology and Application, 1994,9(1):1-10.
[19] Buckingham W F, Sommer S E . Mineralogical characterization of rock surfaces formed by hydrothermal alteration and weathering-application to remote sensing[J]. Economic Geology, 1983,78(4):664-674.
[20] Abdelsalam M G, Stern R J, Berhane W G . Mapping gossans in arid regions with Landsat TM and SIR-C images:The Beddaho alteration zone in northern Eritrea[J]. Journal of African Earth Sciences, 2000,30(4):903-916.
[21] Yang H, Zhang J, van der Meer F ,et al.Spectral characteristics of wheat associated with hydrocarbon microseepage[J]. International Journal of Remote Sensing, 1999,20(4):807-813.
[22] Salati S, van Ruitenbeek F, van der Meer F , et al. Detection of alteration induced by onshore gas seeps from ASTER and WorldView-2 data[J]. Remote Sensing, 2014,6(4):3188-3209.
[23] Crosta A, Moore J . Geological mapping using Landsat Thematic Mapper imagery in Almeria Province,south-east Spain[J]. International Journal of Remote Sensing, 1989,10(3):505-514.
[24] Carroll H B, Guo G . A New Methodology for Oil and Gas Exploration Using Remote Sensing Data and Surface Fracture Analysis[R]. United States:National Petroleum Technology Office, 1999.
[25] 汪子义, 张廷斌, 易桂花 , 等. Landsat8 OLI数据斑岩铜矿遥感蚀变矿物组合提取研究[J]. 国土资源遥感, 2018,30(3):89-95.doi: 10.6046/gtzyyg.2018.03.13.
Wang Z Y, Zhang T B, Yi G H , et al. Extraction of hydrothermal alteration mineral groups of porphyry copper deposits using Landsat8 OLI data[J]. Remote Sensing for Land and Resources, 2018,30(3):89-95.doi: 10.6046/gtzyyg.2018.03.13.
[26] 成功, 朱佳玮, 毛先成 . 基于ASTER数据的金川铜镍矿床外围遥感找矿预测[J]. 国土资源遥感, 2016,28(1):15-21.doi: 10.6046/gtzyyg.2016.01.03.
doi: 10.6046/gtzyyg.2016.01.03
Cheng G, Zhu J W, Mao X C . Remote sensing prospecting prediction in periphery of the Jinchuan copper-nickel deposit based on ASTER data[J]. Remote Sensing for Land and Resources, 2016,28(1):15-21.doi: 10.6046/gtzyyg.2016.01.03.
[27] 吴小娟, 温静, 肖晨超 , 等. 基于多源遥感数据的矿物蚀变信息提取——以西藏甲玛铜多金属矿为例[J]. 地质力学学报, 2015,21(2):228-240.
Wu X J, Wen J, Xiao C C , et al. Extraction of altered mineral information based on multi-source remote sensing data:A case study of Jiama copper polymetallic deposit[J]. Journal of Geomechanics, 2015,21(2):228-240.
[28] 任广利, 杨敏, 李健强 , 等. 高光谱蚀变信息在金矿找矿预测中的应用研究——以北山方山口金矿线索为例[J]. 国土资源遥感, 2017,29(3):182-190.doi: 10.6046/gtzyyg.2017.03.27.
Ren G L, Yang M, Li J Q , et al. Application of hyper-spectral alteration information to gold prospecting:A case study of Fangshankou area,Beishan[J]. Remote Sensing for Land and Resources, 2017,29(3):182-190.doi: 10.6046/gtzyyg.2017.03.27.
[29] 刘志武, 党安荣, 雷志栋 , 等. 利用ASTER遥感数据反演陆面温度的算法及应用研究[J]. 地理科学进展, 2003,22(5):507-514.
doi: 10.11820/dlkxjz.2003.05.009
Liu Z W, Dang A R, Lei Z D , et al. A retrieval model of land surface temperature with ASTER data and its application study[J]. Progress in Geography, 2003,22(5):507-514.
[30] Iwasaki A, Fujisada H, Akao H , et al. Enhancement of spectral separation performance for ASTER/SWIR [C]//The International Society for Optical Engineering.San Diego:SPIE, 2002: 42-50.
[31] 余健, 张志, 李闵佳 , 等. 基于ASTER遥感影像的西昆仑岩性信息提取方法研究[J]. 国土资源遥感, 2012,24(1):22-27.doi: 10.6046/gtzyyg.2012.01.05.
doi: 10.6046/gtzyyg.2012.01.05
Yu J, Zhang Z, Li M J , et al. The methodology of lithologic information extraction by using ASTER data in West Kunlun Mountains[J]. Remote Sensing for Land and Resources, 2012,24(1):22-27.doi: 10.6046/gtzyyg.2012.01.05.
[32] 罗慧芬, 苗放, 叶成名 , 等. 基于FLAASH模型的ASTER卫星影像大气校正[J]. 安徽农业科学, 2009,37(17):8101-8102.
Luo H F, Miao F, Ye C M , et al. Atmospheric correction on ASTER satellite image based on FLAASH model[J]. Journal of Anhui Agricultural Sciences, 2009,37(17):8101-8102.
[33] 亓雪勇, 田庆久 . 光学遥感大气校正研究进展[J]. 国土资源遥感, 2005,17(4):1-6.doi: 10.6046/gtzyyg.2005.04.01.
doi: 10.6046/gtzyyg.2005.04.01
Qi X Y, Tian Q J . The advances in the study of atmospheric correction for optical remote sensing[J]. Remote Sensing for Land and Resources, 2005,17(4):1-6.doi: 10.6046/gtzyyg.2005.04.01.
[34] 孟翔晨, 历华, 杜永明 , 等. 基于ASTER GED产品的地表发射率估算[J]. 遥感学报, 2016,20(3):382-396.
Meng X C, Li H, Du Y M , et al. Estimating land surface emissivity from ASTER GED products[J]. Journal of Remote Sensing, 2016,20(3):382-396.
[35] 张春森, 徐肖雷, 陈越峰 . 基于ETM+数据的煤田火区温度异常信息提取[J]. 国土资源遥感, 2017,29(2):201-206.doi: 10.6046/gtzyyg.2017.02.29.
Zhang C S, Xu X L, Chen Y F . Temperature anomaly information extraction in coalfield fire area based on ETM+ data[J]. Remote Sensing for Land and Resources, 2017,29(2):201-206.doi: 10.6046/gtzyyg.2017.02.29.
[36] Song L S, Liu S M, Kustas W P , et al. Using the surface temperature-albedo space to separate regional soil and vegetation temperatures from ASTER data[J]. Remote Sensing, 2015,7(5):5828-5848.
[1] 刘建宇, 陈玲, 李伟, 王根厚, 王博. 基于ASTER数据韧性剪切带型金矿蚀变信息提取方法优化[J]. 国土资源遥感, 2019, 31(1): 229-236.
[2] 林奕桐, 叶骏菲, 王永前, 钟仕全. 基于MODIS热红外波段与投影寻踪模型的水汽反演方法[J]. 国土资源遥感, 2018, 30(3): 120-127.
[3] 杨敏, 杨贵军, 王艳杰, 张勇峰, 张智宏, 孙晨红. 北京城市热岛效应时空变化遥感分析[J]. 国土资源遥感, 2018, 30(3): 213-223.
[4] 杨达昌, 陈洁, 高子弘, 韩亚超. 天宫一号高光谱数据烃类微渗漏信息提取[J]. 国土资源遥感, 2018, 30(2): 107-113.
[5] 张云峰, 李领军, 冯淳. ASTER数据在北方铝土矿预普查中的应用——以豫西渑池地区为例[J]. 国土资源遥感, 2012, 24(1): 48-52.
[6] 许军强, 白朝军, 刘嘉宜. 遥感技术支持下的长白山火山区地热预测研究[J]. 国土资源遥感, 2008, 20(1): 68-71.
[7] 毛克彪, 唐华俊, 陈仲新, 王永前. 一个用神经网络优化的针对ASTER数据反演地表温度和发射率的多波段算法[J]. 国土资源遥感, 2007, 19(3): 18-22.
[8] 毛克彪, 施建成, 李召良, 覃志豪, 贾媛媛. 用被动微波AMSR数据反演地表温度及发射率的方法研究[J]. 国土资源遥感, 2005, 17(3): 14-17.
[9] 高懋芳, 覃志豪, 刘三超.  MODIS数据在林火监测中的应用研究[J]. 国土资源遥感, 2005, 17(2): 60-63.
[10] 刘三超, 张万昌. 张掖绿洲城市热效应的遥感研究[J]. 国土资源遥感, 2003, 15(4): 17-21.
[11] 朱黎江, 秦其明, 陈思锦. ASTER遥感数据解读与应用[J]. 国土资源遥感, 2003, 15(2): 59-63.
[12] 靳秀良. 陕北油田烃类微渗漏遥感化探特征[J]. 国土资源遥感, 1999, 11(4): 23-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发