Please wait a minute...
国土资源遥感  2020, Vol. 32 Issue (1): 75-80    DOI: 10.6046/gtzyyg.2020.01.11
     技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于图像的玉米植株叶倾角概率密度分布函数提取
陈啸1,2,4,边大红3,崔彦宏3,刘鑫莉1,2,孟祥磊1,2,苏伟1,2()
1. 中国农业大学土地科学与技术学院,北京 100083
2. 农业农村部农业灾害遥感重点实验室,北京 100083
3. 河北农业大学农学院,保定 071001
4. 北京大学遥感与地理信息系统研究所,北京 100871
Extraction of probability density distribution function of corn plant
Xiao CHEN1,2,4,Dahong BIAN3,Yanhong CUI3,Xinli LIU1,2,Xianglei MENG1,2,Wei SU1,2()
1. College of Land Science and Technology, China Agricultural University, Beijing 100083, China
2. Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture, Beijing 100083, China
3. College of Agronomy, Hebei Agricultural University, Baoding 071001, China
4. Institute of Remote Sensing and Geographic Information System, Peking University, Beijing 100871, China
全文: PDF(2824 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

叶倾角是描述植被冠层结构的一种重要参数,叶倾角分布(leaf angle distribution,LAD)决定了植被冠层对辐射的截获量,也是遥感定量反演中的一个重要参数。目前实测叶倾角的方法费时、费力、主观性强、精度无法保证。提出了一种基于图像的玉米植株叶倾角概率密度函数提取方法,以求快速、精确、低成本地获取玉米植株叶倾角。首先,对图像提取骨架; 然后,去除骨架图像中的毛刺、茎秆等信息,得到叶片骨架; 最后,以2像素×20像素大小的搜索窗口搜索骨架提取出叶倾角。精度评价结果表明,乳熟期玉米叶倾角提取值与实测值的相关系数为0.821 4,拔节期玉米叶倾角提取值与实测值相关系数为0.908 7。结果表明该方法具有可行性,精度较高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈啸
边大红
崔彦宏
刘鑫莉
孟祥磊
苏伟
关键词 图像玉米植株叶倾角概率密度函数骨架化去毛刺    
Abstract

Leaf angle is an important parameter to describe the canopy structure of vegetation. The leaf angle distribution (LAD) determines the interception of vegetation canopy and is an important parameter in quantitative inversion of remote sensing. The current method of measuring the leaf angle is time-consuming, labor-intensive and subjective, with no accuracy guarantee. In this paper, image-based probability density function extraction for LAD of corn plant is proposed, which can extract LAD of corn plant quickly and accurately with low cost. Firstly, the skeleton is extracted from the image. Secondly, the information such as burrs and stems in the skeleton image is removed to obtain the leaf skeleton. Finally, the leaf angle is extracted by searching the skeleton with a search window of size 2×20. The results of precision evaluation show that the correlation coefficient between the measured value of the corn dip angle and the extracted value is 0.821 4, and the correlation coefficient between measured and extracted values of the corn leaf angle at jointing stage is 0.908 7, which suggests that the method is feasible and accurate with low cost.

Key wordsimage    corn plant    leaf angle distribution function    skeletonization    deburring
收稿日期: 2019-01-07      出版日期: 2020-03-14
ZTFLH:  TN959.3  
  Q948.1  
基金资助:十三五国家重点研发计划项目“黄淮海北部夏玉米超高产群个体发育规律与群体质量调控技术”(编号: 2017YFD0300903);国家自然科学基金项目“联合时序遥感影像和地基激光雷达的玉米生长过程监测方法研究”(编号: 41671433);中国农业大学2019年教师党支部书记“双带头人”科技创新培育专项“夏玉米封垄后生物量遥感反演方法研究”(编号: 2019TC138)
通讯作者: 苏伟     E-mail: suwei@cau.edu.cn
作者简介: 陈 啸(1997-),男,本科,主要从事基于图像的农作物植株和冠层结构参数提取方法研究。Email: williamchen-x@foxmail.com。
引用本文:   
陈啸,边大红,崔彦宏,刘鑫莉,孟祥磊,苏伟. 基于图像的玉米植株叶倾角概率密度分布函数提取[J]. 国土资源遥感, 2020, 32(1): 75-80.
Xiao CHEN,Dahong BIAN,Yanhong CUI,Xinli LIU,Xianglei MENG,Wei SU. Extraction of probability density distribution function of corn plant. Remote Sensing for Land & Resources, 2020, 32(1): 75-80.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.01.11      或      http://www.gtzyyg.com/CN/Y2020/V32/I1/75
Fig.1  图像预处理结果
Fig.2  测量叶倾角示意图
Fig.3  p1点八领域示意图
Fig.4  骨架化处理流程
Fig.5  去毛刺流程
Fig.6  伪节点示意图及其去除后结果
Fig.7  乳熟期和拔节期玉米植株骨架化处理结果
Fig.8  去毛刺处理前后的玉米叶片骨架
Fig.9  玉米植株茎秆和穗去除结果
Fig.10  乳熟期和拔节期玉米植株LAD提取与实测结果的对比分析
[1] 王绪鹏, 范文义, 温一博 . 基于Campbell椭球分布函数的大兴安岭地区主要树种叶倾角分布模拟[J]. 应用生态学报, 2013,24(11):3199-3206.
Wang X P, Fang W Y, Wen Y B . Simulation of leaf inclination angle distribution of main tree species in Daxing’an Mountains of China based on the Campbell ellipsoid distribution function[J] Journal of Applied Ecology, 2013,24(11):3199-3206.
[2] 苏伟, 郭皓, 赵冬玲 , 等. 基于优化PROSAIL叶倾角分布函数的玉米LAI反演方法[J]. 农业机械学报, 2016,47(3):234-241.
Su W, Guo H, Zhao D L , et al. Corn LAI inversion method based on optimized PROSAIL leaf dip distribution function[J]. Journal of Agricultural Machinery, 2016,47(3):234-241.
[3] Campbell G S . Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution[J]. Agricultural and Forest Meteorology, 1986,36(4):317-321.
[4] Goel N S, Strebel D E . Simple beta distribution representation of leaf orientation in vegetation canopies 1[J]. Agronomy Journal, 1984,76(5):800-802.
[5] Lang A R G, Xiang Y Q, Norman J M . Crop structure and the penetration of direct sunlight[J]. Agricultural and Forest Meteorology, 1985,35(1-4):83-101.
[6] 苏伟, 展郡鸽, 李静 , 等. 基于地基激光雷达的叶倾角分布升尺度方法研究[J]. 农业机械学报, 2016,47(9):180-185.
Su W, Zhan J G, Li J , et al. Research on upscaling method of leaf dip angle distribution based on ground-based LiDAR[J]. Journal of Agricultural Machinery, 2016,47(9):180-185.
[7] Zheng G, Moskal L M . Leaf orientation retrieval from terrestrial laser scanning (TLS) data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(10):3970-3979.
[8] Zou X, Mõttus M, Tammeorg P , et al. Photographic measurement of leaf angles in field crops[J]. Agricultural and Forest Meteorology, 2014,184:137-146.
[9] Sinoquet H, Thanisawanyangkura S, Mabrouk H , et al. Characterization of the light environment in canopies using 3D digitising and image processing[J]. Annals of Botany, 1998,82(2):203-212.
[10] 王绪鹏, 范文义, 曲迪 . 基于植物冠层分析仪单线多角度测量的叶面积指数与叶倾角分布关系[J]. 生态学杂志, 2014,33(12):3209-3215.
Wang X B, Fan W Y, Qu D . The relationship between leaf area index and leaf dip angle distribution based on single-line multi-angle measurement of plant canopy analyzer[J]. Journal of ecology, 2014,33(12):3209-3215.
[11] Saeed K, Tabędzki M, Rybnik M , et al. K3M:A universal algorithm for image skeletonization and a review of thinning techniques[J]. International Journal of Applied Mathematics and Computer Science, 2010,20(2):317-335.
[12] Zhang T Y, Suen C Y . A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 1984,27(3):236-239.
[13] 王婉心, 贾立锋 . 骨架提取中的毛刺去除方法[J]. 广东工业大学学报, 2014,31(4):90-94.
Wang W X, Jia L F . Burr removal method in skeleton extraction[J]. Journal of Guangdong University of Technology, 2014,31(4):90-94.
[14] 郭斯羽, 董红霞, 张翌 . 一种用于植物叶片图像骨架提取的去毛刺方法[J]. 电子测量与仪器学报, 2013,27(1):52-56.
Guo S Y, Dong H X, Zhang L . Deburring method for plant leaf image skeleton extraction[J]. Journal of Electronic Measurement and Instrument, 2013,27(1):52-56.
[15] 王要峰, 崔艳 . 基于方向链码去除骨架图像毛刺算法[J]. 计算机应用, 2013,33(s1):193-194.
Wang Y F Cui Y . Skeleton image glitch algorithm based on direction chain code[J]. Computer Application, 2013,33(s1):193-194.
[16] 秦筱楲, 蔡超, 周成平 . 一种有效的骨架毛刺去除算法[J]. 华中科技大学学报(自然科学版), 2004,32(12):28-31.
Qin X W, Cai C, Zhou C P . An effective skeleton burr removal algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2004,32(12):28-31.
[1] 卜丽静,李秀伟,张正鹏,姜昊男. 条件生成对抗网络在遥感图像复原中的可行性[J]. 国土资源遥感, 2020, 32(1): 27-34.
[2] 杨丽萍,马孟,谢巍,潘雪萍. 干旱区Landsat8全色与多光谱数据融合算法评价[J]. 国土资源遥感, 2019, 31(4): 11-19.
[3] 姚本佐,何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019, 31(3): 59-64.
[4] 卫宝泉,索安宁,李颖,赵建华. LBV变换在国产ZY-3卫星影像中应用研究探讨[J]. 国土资源遥感, 2019, 31(3): 87-94.
[5] 李想,杨灿坤,周春平,李小娟,张可. 高分辨率光学卫星图像目标运动信息提取研究综述[J]. 国土资源遥感, 2019, 31(3): 1-9.
[6] 林志玮,涂伟豪,黄嘉航,丁启禄,周铮雯,刘金福. 基于FC-DenseNet的低空航拍光学图像树种识别[J]. 国土资源遥感, 2019, 31(3): 225-233.
[7] 叶发茂,罗威,苏燕飞,赵旭青,肖慧,闵卫东. 卷积神经网络特征在遥感图像配准中的应用[J]. 国土资源遥感, 2019, 31(2): 32-37.
[8] 谢奇芳,姚国清,张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2): 38-43.
[9] 阿茹罕,何芳,王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[10] 曲海成,郭月,王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法[J]. 国土资源遥感, 2019, 31(2): 24-31.
[11] 葛芸,江顺亮,叶发茂,姜昌龙,陈英,唐祎玲. 聚合CNN特征的遥感图像检索[J]. 国土资源遥感, 2019, 31(1): 49-57.
[12] 涂兵,张晓飞,张国云,王锦萍,周瑶. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1): 22-32.
[13] 张永梅,孙海燕,胥玉龙. 一种改进的基于超像素的多光谱图像分割方法[J]. 国土资源遥感, 2019, 31(1): 58-64.
[14] 张康,黑保琴,李盛阳,邵雨阳. 基于CNN模型的遥感图像复杂场景分类[J]. 国土资源遥感, 2018, 30(4): 49-55.
[15] 刘万军,李天慧,曲海成. 基于Fisher准则和TrAdaboost的高光谱相似样本分类算法[J]. 国土资源遥感, 2018, 30(4): 41-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发