Please wait a minute...
国土资源遥感  2020, Vol. 32 Issue (1): 162-168    DOI: 10.6046/gtzyyg.2020.01.22
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
河南漯河郾城区冬小麦LAI反演结果真实性检验
袁辉1,4,秦其明1,2,3(),孙元亨1
1. 北京大学地球与空间科学学院遥感与地理信息系统研究所,北京 100871
2. 空间信息集成与3S工程应用北京市重点实验室,北京 100871
3. 地理信息基础软件与应用国家测绘地理信息局工程技术研究中心,北京 100871
4. 中国人民解放军第96944部队,北京 100096
Validation of LAI retrieval results of winter wheat in Yancheng, Luohe area of Henan Province
Hui YUAN1,4,Qiming QIN1,2,3(),Yuanheng SUN1
1. Institute of Remote Sensing and Geographical Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China
2. Beijing Key Lab of Spatial Information Integration and Its Application, Peking University, Beijing 100871, China
3. Geographic Information Engineering Technology Center of Geographic Information Basic Software and Application, Beijing 100871, China
4. 96944 Troops of PLA, Beijing 100096, China
全文: PDF(2805 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为对比不同真实性检验方法对高分一号(GF-1)/WFV冬小麦叶面积指数(leaf area index,LAI)反演结果的验证效果,以河南省漯河市郾城区为研究区,分别采用单点测量值验证、多点采样尺度上推验证以及引入高空间分辨率影像验证3种方法对基于GF-1/WFV影像的冬小麦LAI反演结果进行了真实性检验。研究结果表明,3种验证方法得到的均方根误差(root mean square error,RMSE)分别为0.57,0.80和0.46,相关系数分别为0.885,0.508和0.867。由于基于多点采样尺度上推方法对采样点数量及其位置要求较高,因此在本研究采样点较少的情况下精度较低,效果欠佳; 另外2种方法精度相对较高,适用性较强,但其中引入高空间分辨率影像验证方法精度更高,更适用于GF-1/WFV影像LAI反演的真实性检验。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁辉
秦其明
孙元亨
关键词 LAIGF-1/WFV冬小麦真实性检验    
Abstract

In order to compare the validation performances of different validation methods on the GF-1/WFV winter wheat LAI retrieval results, the authors chose Yancheng, Luohe City of Henan Province as the study area. Three methods, i.e., single point ground measurement validation, multi-point upscaling validation, and high-resolution result validation, were tested to verify the performance of winter wheat LAI inversion based on GF-1/WFV image. The results show that the RMSE obtained by the above three verification methods are 0.57,0.80 and 0.46,respectively. The correlation coefficients are 0.885, 0.508 and 0.867,respectively. The multi-point upscaling method has higher requirements for the number of sampling points and the position of sampling points. Therefore, the accuracy is low and the effect is poor in the case of fewer sampling points in this study. The other two methods have relatively high precision and applicability, and the validation method with the introduction of high-resolution image achieves higher precision, and hence this method is more suitable for the validation of LAI inversion of GF-1/WFV images.

Key wordsLAI    GF-1/WFV    winter wheat    validation
收稿日期: 2019-01-07      出版日期: 2020-03-14
ZTFLH:  TP79  
基金资助:国家重点研发项目“粮食作物生长监测诊断与精确栽培技术”第三课题“作物生长与生产力卫星遥感监测预测”(编号: 2016YFD0300603)
通讯作者: 秦其明     E-mail: qmqinpku@163.com
作者简介: 袁 辉(1982-),男,硕士研究生,主要从事遥感反演真实性检验研究。Email: 1601210227@pku.edu.cn。
引用本文:   
袁辉,秦其明,孙元亨. 河南漯河郾城区冬小麦LAI反演结果真实性检验[J]. 国土资源遥感, 2020, 32(1): 162-168.
Hui YUAN,Qiming QIN,Yuanheng SUN. Validation of LAI retrieval results of winter wheat in Yancheng, Luohe area of Henan Province. Remote Sensing for Land & Resources, 2020, 32(1): 162-168.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.01.22      或      http://www.gtzyyg.com/CN/Y2020/V32/I1/162
Fig.1  漯河市郾城区研究区及采样点位置示意图
影像 成像波段/μm 地面分辨率/m 成像时间
GF-1/WFV 蓝光: 0.45~0.52 16 2018-03-12
绿光: 0.52~0.59
红光: 0.63~0.69
近红外: 0.77~0.89
WorldView-2 海岸带: 0.4~0.45 2 2018-03-13
蓝光: 0.45~0.51
绿光: 0.51~0.58
黄光: 0.585~0.625
红光: 0.63~0.69
红边: 0.705~0.745
近红外1: 0.77~0.89
近红外2: 0.86~1.04
Tab.1  GF-1/WFV与WorldView-2影像信息对照
Fig.2  GF-1/WFV波谱响应函数曲线
Fig.3  研究区GF-1/WFV LAI反演结果
Fig.4  WorldView-2 LAI反演与尺度上推比较
Fig.5  研究区冬小麦LAI真实性检验结果
[1] Chen J M, Black T A . Defining leaf area index for non-flat leaves[J]. Plant Cell and Environment, 1992,15:421-429.
[2] 李淑敏, 李红, 孙丹峰 , 等. PROSAIL冠层光谱模型遥感反演区域叶面积指数[J]. 光谱学与光谱分析, 2009,29(10):2725-2729.
Li S M, Li H, Sun D F , et al. Estimation of regional leaf area index by remote sensing inversion of PROSAIL canopy spectral model[J]. Spectroscopy and Spectral Analysis, 2009,29(10):2725-2729.
[3] Darvishzadeh R, Skidmore A, Schlerf M , et al. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland[J]. Remote Sensing of Environment, 2008,112(5):2592-2604.
[4] Haboudane D . Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 2004,90(3):337-352.
[5] Zhao D H, Yang T W, An S Q . Effects of crop residue cover resulting from tillage practices on LAI estimation of wheat canopies using remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2012,14(1):169-177.
[6] Li X W, Strahler A H,and Woodcock C . A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies[J]. IEEE Transaction on Geoscience and Remote Sensing, 1995,33(2):466-480.
[7] 李鑫川, 徐新刚, 鲍艳松 , 等. 基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演[J]. 中国农业科学, 2012,45(17):3486-3496.
Li X C, Xu X G, Bao Y S , et al. Retrieving LAI of winter wheat based on sensitive vegetation index by the segmentation method[J]. Scientia Agricultura Sinica, 2012,45(17):3486.
[8] Justice C, Belward A, Morisette J , et al. Developments in the “validation” of satellite sensor products for the study of the land surface[J]. International Journal of Remote Sensing, 2000,21(17):2283-3390.
[9] 吴小丹, 闻建光, 肖青 , 等. 关键陆表参数遥感产品真实性检验方法研究进展[J]. 遥感学报, 2015,19(1):76-92.
Wu X D, Wen J G, Xiao Q , et al. Advances invalidation methods for remote sensing products of land surface parameters[J]. Journal of Remote Sensing, 2015,19(1):76-92.
[10] Fensholt R, Sandholt I, Rasmussen M S . Evaluation of MODIS LAI,FAPAR and the relation between FAPAR and NDVI in a semiarid environment using in situ measurements[J]. Remote Sensing of Environment, 2004,91(3-4):490-507.
[11] Privette J L, Myneni R B, Knyazikhin Y , et al. Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari[J]. Remote Sensing of Environment, 2002,83(1/2):232-243.
[12] 家淑珍, 马明国, 于文凭 . 黑河中游LAI产品真实性检验研究[J]. 遥感技术与应用, 2014,29(6), 1037-1045.
Jia S Z, Ma M G, Yu W P . Validation of LAI product in Heihe river basin[J]. Remote Sensing Technology and Application, 2014,29(6):1037-1045.
[13] Liang S L, Fang H L, Chen M Z , et al. Validating MODIS land surface reflectance and albedo products:Methods and preliminary results[J]. Remote Sensing of Environment, 2002,83(1-2):149-162.
[14] 张仁华, 田静, 李召良 , 等. 定量遥感产品真实性检验的基础与方法[J]. 中国科学(地球科学), 2010,40(2):211-222.
Zhang R H, Tian J, Li Z L , et al. Principles and methods for the validation of quantitative remote sensing products[J]. Science in China (Earth Science), 2010,40(2):211-222.
[15] Qu Y H, Zhu Y Q, Han W C , et al. Crop leaf area index observations with a wireless sensor network and its potential for validating remote sensing products[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(2):431-444.
[16] Weiss M, Baret F, Garrigues S , et al. LAI and FAPAR CYCLOPES global products derived from Vegetation.Part 2:Validation and comparison with MODIS collection 4 products[J]. Remote Sensing of Environment, 2007,110(3):317-331.
[17] Garrigues S, Lacaze R, Baret F , et al. Validation and intercomparison of global leaf area index products derived from remote sensing data[J]. Journal of Geophysical Research:Biogeosciences, 2008,113:G2.
[18] Jin H A, Li A N, Bian J H , et al. Intercomparison and validation of MODIS and GLASS leaf area index (LAI) products over mountain areas:A case study in southwestern China[J]. International Journal of Applied Earth Observation and Geoinformation, 2017,55(2017):52-67.
[19] Li H, Liu G, Liu Q , et al. Retrieval of winter wheat leaf area index from Chinese GF-1 satellite data using the PROSAIL model[J]. Sensors, 2018,18(4):1120-1138.
[20] Bicheron P, Leroy M . A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model[J]. Remote Sensing of Environment, 1999,67(3):P251-266.
[21] 刘洋, 刘荣高, 陈镜明 , 等. 叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报, 2013,15(5):734-743.
Liu Y, Liu R G, Chen J M , et al. Current status and perspectives of leaf area index retrieval from optical remote sensing data[J]. Journal of Geo-Information Science, 2013,15(5):734-743.
[22] Sun Y H, Ren H Z, Zhang T Y , et al. Crop leaf area index retrieval based on inverted difference vegetation Index and NDVI[J]. IEEE Geoscience and Remote Sensing Letters, 2018,15(11):1662-1666.
[1] 李晓彤,覃先林,刘树超,孙桂芬,刘倩. 基于GF-1 WFV数据森林叶面积指数估算[J]. 国土资源遥感, 2019, 31(3): 80-86.
[2] 侯学会,隋学艳,姚慧敏,梁守真,王猛. 基于物候信息的山东省冬小麦长势遥感监测[J]. 国土资源遥感, 2018, 30(2): 171-177.
[3] 陆坤, 孟庆岩, 孙云晓, 孙震辉, 张琳琳. 基于GF-2卫星数据的孕穗期小麦叶面积指数反演——以河北省廊坊市为例[J]. 国土资源遥感, 2018, 30(1): 196-202.
[4] 赵庆庆, 姜鲁光, 李文叶, 封志明. 鲁西北平原冬小麦种植格局时空变化: 2000―2014[J]. 国土资源遥感, 2017, 29(2): 173-180.
[5] 任哲, 陈怀亮, 王连喜, 李颖, 李琪. 利用交叉验证的小麦LAI反演模型研究[J]. 国土资源遥感, 2015, 27(4): 34-40.
[6] 陈健, 王文君, 盛世杰, 张雪红. 基于机载MASTER数据的果园叶面积指数遥感反演[J]. 国土资源遥感, 2015, 27(2): 69-74.
[7] 权文婷, 王钊. 冬小麦种植面积遥感提取方法研究[J]. 国土资源遥感, 2013, 25(4): 8-15.
[8] 马红章, 刘素美, 朱晓波, 孙根云, 孙林, 柳钦火. 基于被动微波遥感技术的玉米冠层叶面积指数反演[J]. 国土资源遥感, 2013, 25(3): 66-71.
[9] 赵俊芳, 房世波, 郭建平. 受蚜虫危害与干旱胁迫的冬小麦高光谱判别[J]. 国土资源遥感, 2013, 25(3): 153-158.
[10] 张学艺, 李剑萍, 官景得, 秦其明, 马力文, 曹宁. 两种叶面积指数动态模拟方法的对比研究[J]. 国土资源遥感, 2011, 23(3): 43-47.
[11] 李新辉, 宋小宁, 冷佩. 利用CHRIS/PROBA数据定量反演草地LAI方法研究[J]. 国土资源遥感, 2011, 23(3): 61-66.
[12] 赵莲, 张锦水, 胡潭高, 陈联裙, 李乐. 变端元混合像元分解冬小麦种植面积测量方法[J]. 国土资源遥感, 2011, 23(1): 66-72.
[13] 高帅, 牛铮, 刘翔, 吴朝阳.  
结合雷达影像纹理特征的作物叶面积指数估测
[J]. 国土资源遥感, 2010, 22(3): 36-40.
[14] 傅银贞, 汪小钦, 江洪.
马尾松LAI与植被指数的相关性研究
[J]. 国土资源遥感, 2010, 22(3): 41-46.
[15] 陈雪洋, 蒙继华, 杜鑫, 张飞飞, 张淼, 吴炳方. 基于环境星CCD数据的冬小麦叶面积指数遥感监测模型研究[J]. 国土资源遥感, 2010, 22(2): 55-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发