Please wait a minute...
国土资源遥感  2020, Vol. 32 Issue (1): 169-175    DOI: 10.6046/gtzyyg.2020.01.23
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于SI-MSAVI特征空间的河套灌区盐碱化遥感监测研究
卢晶1,3,张绪教1(),叶培盛2,吴杭1,王涛1
1. 中国地质大学(北京)地球科学与资源学院,北京 100083
2. 中国地质科学院地质力学研究所,北京 100081
3. 中国地质调查局北京探矿工程研究所,北京 100083
Remote sensing monitoring of salinization in Hetao irrigation district based on SI-MSAVI feature space
Jing LU1,3,Xujiao ZHANG1(),Peisheng YE2,Hang WU1,Tao WANG1
1. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China
2. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
3. Beijing Institute of Exploration Engineering, China Geological Survey, Beijing 100083, China
全文: PDF(4954 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

内蒙古河套灌区土壤盐碱化已经严重影响到了当地农业和经济的可持续发展。遥感技术能够定量获取实时的土壤盐碱化信息,监测盐碱化状况。利用Landsat遥感影像,采用盐分指数(salinity index,SI)和改进型土壤调节植被指数(modified soil-adjusted vegetation index,MSAVI)构建了改进型盐碱化监测指数(modified salinization detection index,MSDI)模型,对河套灌区沈乌灌域土壤盐碱化进行定量分析与监测,然后分别对研究区2001年、2010年和2017年土壤盐碱化信息进行分类并统计分析,不同盐碱地类型的MSDI平均值差异明显。通过野外考察并结合土壤样品实测含盐量数据,对改进型盐碱化监测模型进行了精度验证,MSDI与土壤含盐量相关性为0.856 8,土壤盐碱化信息提取总体精度达到87.5%,Kappa系数为0.726。2001年以来研究区土壤盐碱化状况得到了有效的改善,非盐碱地占比由18.50%增加至30.47%,中轻度盐碱地呈碎片化趋势。结果表明,基于SI-MSAVI特征空间建立的盐碱化监测模型MSDI可以定量提取土壤盐碱化信息,有效地对河套灌区土壤盐碱化进行监测。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢晶
张绪教
叶培盛
吴杭
王涛
关键词 SI-MSAVI特征空间Landsat影像河套灌区盐碱化MSDI    
Abstract

The soil salinization in Hetao irrigation district of Inner Mongolia has exerted severe impact on the sustainable development of local agriculture and economy. Remote sensing can be applied to achieve the real-time information of soil salinization so as to monitor salinization’s future changes. The authors used the satellite images of Landsat to extract salt index (SI) and modified soil mediation vegetation index (MSAVI) and then combined them to construct modified salinization detection index (MSDI) model so as to quantitatively analyze and monitor the soil salinization in this research. After that, the soil salinization information in the study areas obtained in 2001, 2010 and 2017 was further classified and statistically analyzed, which showed an obvious diversity of MSDI mean among various alkali soil types. The result of MSDI was validated by the precision test, field investigation and the salinity of soil samples. The validation demonstrated a strong correlation of 0.856 8 between MSDI and soil salinity, a precision test accuracy of 87.5%, and a Kappa index of 0.726. The soil salinization of this area had been mitigated according to portion changes of non-alkali soil area (from 18.5% to 30.47%) and the fragmented tendency of moderately saline land since 2001. The result indicates that MSDI based on the SI-MSAVI feature space could be applied to quantitatively extract the information of soil salinization and proves to be efficient in monitoring the development of salinization in this region.

Key wordsSI-MSAVI feature space    image of Landsat    Hetao irrigation district    salinization    MSDI
收稿日期: 2018-12-29      出版日期: 2020-03-14
ZTFLH:  TP79  
基金资助:中国地质调查局项目“内蒙古1∶5万渡口乡、磴口县幅平原区填图试点”(编号: 121201104000160902);国家自然科学基金项目“河套盆地第四纪裂陷充填过程及其与同缘山地隆升耦合机制”(批准号: 41972192)
通讯作者: 张绪教     E-mail: zhangxj@cugb.edu.cn
作者简介: 卢 晶(1994-),男,硕士研究生,第四纪地质学专业,主要从事遥感及GIS相关研究。Email: lujingCUGB@163.com。
引用本文:   
卢晶,张绪教,叶培盛,吴杭,王涛. 基于SI-MSAVI特征空间的河套灌区盐碱化遥感监测研究[J]. 国土资源遥感, 2020, 32(1): 169-175.
Jing LU,Xujiao ZHANG,Peisheng YE,Hang WU,Tao WANG. Remote sensing monitoring of salinization in Hetao irrigation district based on SI-MSAVI feature space. Remote Sensing for Land & Resources, 2020, 32(1): 169-175.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.01.23      或      http://www.gtzyyg.com/CN/Y2020/V32/I1/169
Fig.1  研究区地理位置(底图源自Google Earth)
Fig.2  水体及沙地信息的提取
Fig.3  SI-MSAVI 特征空间与不同类型盐碱地对比
Fig.4  遥感监测模型MSDI示意图
Fig.5  MSDI与土壤含盐量关系散点图
光谱指数 相关系数
NDVI 0.793 6
SI 0.731 2
MSAVI 0.836 5
MSDI 0.856 8
Tab.1  OLI影像光谱指数与土壤含盐量相关性
类别 非盐碱地
(实际类型)
盐碱地
(实际类型)
总计
非盐碱地(MSDI) 117 12 129
盐碱地(MSDI) 13 58 71
总计 130 70 200
总体精度: 87.5% Kappa系数: 0.726
Tab.2  MSDI精度验证
盐碱地类型 MSDI平均值
非盐碱地 0.15
轻度盐碱地 0.33
中度盐碱地 0.49
重度盐碱地 0.77
Tab.3  不同程度盐碱地MSDI平均值
Fig.6  研究区2001年、2010年和2017年盐碱地分类
类型 2001年 2010年 2017年
面积/
km2
比例/
%
面积/
km2
比例/
%
面积/
km2
比例/
%
水体、沙地 728.80 31.48 473.05 20.44 377.94 16.41
非盐碱地 429.00 18.52 559.15 24.16 701.93 30.47
轻度盐碱地 367.01 15.85 475.78 20.56 450.78 19.57
中度盐碱地 357.96 15.46 421.96 18.24 371.67 16.14
重度盐碱地 432.63 18.69 384.03 16.60 401.14 17.41
Tab.4  研究区2001年、2010年和2017年不同盐碱地类型统计
[1] Wang Y G, Li Y, Xiao D N . Catchment scale spatial variability of soil salt content in agricultural oasis,Northwest China[J]. Environmental Geology, 2008,56(2):439-446.
[2] Wang J Z, Wu J L, Jia J H . Analysis of spatial variation of soil salinization using a hydro chemical and stable isotopic method in a semiarid irrigated basin,Hetao Plain,Inner Mongolia,North China[J]. Environmental Processes, 2016,3(4):723-733.
[3] Yu R H, Liu T X, Xu Y P , et al. Analysis of salinization dynamics by remote sensing in Hetao irrigation district of North China[J]. Agricultural Water Management, 2010,97(12):1952-1960.
[4] 程宇翔 . 土壤盐分遥感监测研究进展[J]. 现代农业科技, 2016(19):185-194.
Cheng Y X . Research progress of soil salinity monitoring by remote sensing[J]. Modern Agricultural Science and Technology, 2016(19):185-194.
[5] Mashimbye Z E, Cho M A, Nell J P , et al. Model-based integrated methods for quantitative estimation of soil salinity from hyper spectral remote sensing data:A case study of selected South African soils[J]. Pedosphere, 2012,22(5):640-649.
[6] Judkins G, Myint S . Spatial variation of soil salinity in the Mexicali Valley,Mexico:Application of a practical method for agricultural monitoring[J]. Environmental Management, 2012,50(3):478-489.
[7] Wang J Z, Wu J L, Zeng H A . Sediment record of abrupt environmental changes in Lake Chenpu,upper reaches of Yellow River Basin,north China[J]. Environmental Earth Sciences, 2015,73(10):6355-6363.
[8] 郭娇, 王伟, 叶浩 , 等. 河套平原盐渍化土地时空动态变化及影响因子[J]. 南水北调与水利科技, 2014,12(3):59-64.
Guo J, Wang W, Ye H , et al. Analysis on spatial and temporal dynamic variations and their impact factors of salinization land in Hetao Plain[J]. South-to-North Water Transfers and Water Science and Technology, 2014,12(3):59-64.
[9] 郭姝姝, 阮本清, 管孝艳 , 等. 内蒙古河套灌区近30年盐碱化时空演变及驱动因素分析[J]. 中国农村水利水电, 2016(9):159-162,167.
Guo S S, Ruan B Q, Guan X Y , et al. Analysis on spatial-temporal evolution of soil salinity and its driving factors in Hetao irrigation district during recent 30 years[J]. China Rural Water and Hydropower, 2016(9):159-162,167.
[10] 丁建丽, 姚远, 王飞 . 干旱区土壤盐渍化特征空间建模[J]. 生态学报, 2014,36(16):4620-4631.
Ding J L, Yao Y, Wang F . Detecting soil salinization in arid regions using spectral feature space derived from remote sensing data[J]. Acta Ecologica Sinica, 2014,36(16):4620-4631.
[11] 王飞, 丁建丽, 伍漫春 . 基于NDVI-SI特征空间的土壤盐渍化遥感模型[J]. 农业工程学报. 2010,26(8):168-173.
Wang F, Ding J L, Wu M C . Remote sensing monitoring models of soil salinization based on NDVI-SI feature space[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(8):168-173.
[12] 哈学萍, 丁建丽 , 等. 基于SI-Albedo特征空间的土壤盐渍化遥感监测指数研究[J]. 土壤学报, 2009,46(4):698-703.
Ha X P, Ding J L , et al. SI-Albedo space-based extraction of salinization information in arid area[J]. Acta Pedolagica Sinica, 2009,46(4):698-703.
[13] 丁建丽, 瞿娟, 孙永猛 , 等. 基于MSAVI-WI特征空间的新疆渭干河—库车河流域绿洲土壤盐渍化研究[J]. 地理研究, 2013,32(2):223-232.
Ding J L, Qu J, Sun Y M , et al. The retrieval model of soil salinization information in arid region based on MSAVI-WI feature space:A case study of the delta oasis in Weigan—Kuqa watershed[J]. Geographical Research, 2013,32(2):223-232.
[14] Deering D W . Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors[D]. College Station:Texas A&M University, 1978.
[15] 姜海兰 . 利用多时相Landsat卫星影像直接提取沙漠化区域的简便方法[D]. 兰州:兰州大学, 2014.
Jiang H L . A Simple Method of Directly Extracting Sandy Desertification Area Based on Multi-Temporal Landsat Satellite Images[D]. Lanzhou:Lanzhou University, 2014.
[16] Hardisky M A, Klemas V, Smart R M . The influence of soil salinity,growth form,and leaf moisture on the spectral radiance of Spartina alterniflora canopies[J]. Photogrammetric Engineering and Remote Sensing, 1983,49(1):77-84.
[17] 张添佑, 王玲, 曾攀丽 , 等. 基于MSAVI-SI特征空间的玛纳斯河流流域灌区土壤盐渍化研究[J]. 干旱区研究, 2016,33(3):499-505.
Zhang T Y, Wang L, Zeng P L , et al. Soil salinization in the irrigated area of the Manas River basin based on MSAVI-SI feature space[J]. Arid Zone Research, 2016,33(3):499-505.
[18] 冯娟, 丁建丽, 魏雯瑜 . 基于Albedo-MSAVI特征空间的渭库绿洲土壤盐渍化研究[J]. 中国农村水利水电, 2018(2):147-152.
Feng J, Ding J L, Wei W Y . A study of soil salinization in Weigan and Kuqa Rivers oasis based on Albedo-MSAVI feature space[J]. China Rural Water and Hydropower, 2018(2):147-152.
[19] Allbed A, Kumar L, Aldakheel Y Y . Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries:Applications in a date palm dominated region[J]. Geoderma, 2014(230):1-8.
[20] Qi J, Chehbouni A, Huete A R , et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994,48(2):119-126.
[21] Khan N M, Sato Y . Monitoring hydro-salinity status and its impact in irrigated semi-arid areas using IRS-1B LISS-II data[J]. Asian Journal of Geoinform, 2001,1(3):63-73.
[22] Liang S . Narrowband to broadband coaversions of land surface albedo:Algorighms[J]. Remote Sensing of Environment, 2001,76(2):213-238.
[23] Verstraete M, Pinty B . Designing optimal spectral indexes for remote sensing applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996,34(5):1254-1265.
[1] 谭柳霞, 曾永年, 郑忠. 林火烈度遥感评估指数适应性分析[J]. 国土资源遥感, 2016, 28(2): 84-90.
[2] 庞治国, 李纪人, 李取生. 吉林西部盐碱化土地空间变化及防治措施[J]. 国土资源遥感, 2004, 16(2): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发