Please wait a minute...
国土资源遥感  2020, Vol. 32 Issue (1): 184-190    DOI: 10.6046/gtzyyg.2020.01.25
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于CZMIL Nova的中国海岸带机载激光雷达测深潜力分析
李奇1,2,王建超1,韩亚超1,高子弘1,张永军1,金鼎坚1
1. 中国自然资源航空物探遥感中心,北京 100083
2. 自然资源部航空地球物理与遥感地质重点实验室,北京 100083
Potential evaluation of China’s coastal airborne LiDAR bathymetry based on CZMIL Nova
Qi LI1,2,Jianchao WANG1,Yachao HAN1,Zihong GAO1,Yongjun ZHANG1,Dingjian JIN1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China
全文: PDF(3414 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

浑浊水体导致激光脉冲能量急剧衰减,并在回波信号中产生大量噪声,导致点云密度降低,甚至无法探测到水底。因此机载激光雷达测深作业需要水体光学特性信息提供支撑,以减少无效测量。首先,基于CZMIL Nova理论测深,根据MODIS反演的中国海域水体漫衰减系数Kd(490 nm)数据,计算CZMIL Nova在海岸带水域的最大理论测深值,最大理论测深超过GEBCO(general bathymetric chart of the oceans)水深数据的区域,即为潜在可测区; 然后,根据最大理论测深与GEBCO水深比值倍数进行可测潜力分类; 最后,选取从清澈到浑浊3种水域实测数据对分类的合理性进行验证。结果表明,中国近海有21.19万km 2区域具备开展机载激光雷达测深工作的潜力; 适合开展海陆一体连续测量的区域为海南岛文昌—东方段、北海及雷州半岛东西岸、山东半岛日照—青岛段、辽东湾银州—绥中段,根据Kd(490 nm)值估算分别为水深20~40 m,10~20 m,20~25 m,10~15 m以浅范围。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李奇
王建超
韩亚超
高子弘
张永军
金鼎坚
关键词 机载激光雷达水体漫衰减系数KdCZMIL Nova潜在可测区    
Abstract

Water transparency is the key factor of airborne LiDAR bathymetry. Turbid waters produce noise in LiDAR echo signal and weaken the laser pulse or cause a gap. Therefore, it is necessary to study water optical properties. Using MODIS Kd (490 nm) and general bathymetric chart of the oceans (GEBCO) bathymetric data, the authors calculated the maximum detectable depth in China’s coastal area based on CZMIL Nova, and classified the result into 3 types. CZMIL test data from different areas were used to verify the accuracy of the classification. The results show that a total of 211,900 km 2 sea area is suitable for the performance of bathymetric survey with airborne LiDAR. The coastal area of Wenchang to Dongfang of Hainan, Beihai and the east and west of Leizhou peninsula, Rizhao to Qindao of Shangdong and Yinzhou to Suizhong of Liaodong Bay are suitable for the performance of land and sea integrating topographic survey, with the maximum measurable depths estimated by Kd being 20~40 m, 10~20 m, 20~25 m, 10~15 m, respectively.

Key wordsairborne LiDAR    Kd    CZMIL Nova    potential area
收稿日期: 2018-12-21      出版日期: 2020-03-14
ZTFLH:  TP79  
基金资助:自然资源部航空地球物理与遥感地质重点实验室青年创新基金课题“集成机载LiDAR和航空重力反演数据的近海海底地形构建研究”(编号: 2016YFL15);中国地质调查局项目“渤海海岸带航空物探遥感调查及应用”(编号: DD20160150)
作者简介: 李 奇(1989-),男,硕士,助理工程师,主要从事航空遥感数据处理及应用研究。Email: 776567017@qq.com。
引用本文:   
李奇,王建超,韩亚超,高子弘,张永军,金鼎坚. 基于CZMIL Nova的中国海岸带机载激光雷达测深潜力分析[J]. 国土资源遥感, 2020, 32(1): 184-190.
Qi LI,Jianchao WANG,Yachao HAN,Zihong GAO,Yongjun ZHANG,Dingjian JIN. Potential evaluation of China’s coastal airborne LiDAR bathymetry based on CZMIL Nova. Remote Sensing for Land & Resources, 2020, 32(1): 184-190.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.01.25      或      http://www.gtzyyg.com/CN/Y2020/V32/I1/184
Fig.1  机载激光雷达水深测量系统示意图
Fig.2  新一代CZMIL Nova系统集成
Fig.3  MODIS反演全球Kd(490 nm)结果示意图
Fig.4  比值计算流程
Fig.5  中国局部海域测深潜力分类示意图
Fig.6  CZMIL Nova实验数据获取分布示意图
实验区 地理坐标 测深潜
力分类
参考Kd/
m-1
数据获取时间
三亚市蜈支洲岛 N18.32°,E109.77° 一类区 <0.2 2018年4月
北海市涠洲岛 N21.45°,E109.43° 二类、三类区 [0.2,0.8] 2018年11月
江门市赤溪镇 N21.92°,E113.32° 三类、四类区 >0.8 2018年8月
Tab.1  实验数据分布
Fig.7  实验区垂直海岸线方向高程剖面
[1] 杨静, 张仁铎, 翁士创 , 等. 海岸带环境承载力评价方法研究[J]. 中国环境科学, 2013,33(s1):178-185.
Yang J, Zhang R D, Weng S C , et al. The assessment method of coastal environmental carrying capacity[J]. China Environmental Science, 2013,33(s1):178-185.
[2] 温文 . 基于相关特性的水下连续激光后向散射测量方法研究[D]. 哈尔滨:哈尔滨工程大学, 2007.
Wen W . Research on Underwater Continuous Laser Backscattering Measurement Method Based on Correlation Characteristics[D]. Harbin:Harbin Engineering University, 2007
[3] Feygels V, Ramnath V, Smith B , et al. Meeting the international hydrographic organization requirements for bottom feature detection using the coastal zone mapping and imaging LiDAR (CZMIL)[C]// Oceans.IEEE, 2016.
[4] 李志忠 . 机载激光雷达系统及其在海洋调查中的应用前景[J]. 地学前缘, 1998,5(2):246.
Li Z Z . Airborne LiDAR and its application prospects in marine surveys[J]. Earth Science Frontiers, 1998,5(2):246.
[5] 付成群, 律秀原, 王勇 , 等. 机载激光雷达海洋探测的模拟研究[J]. 系统仿真学报, 2015,27(5):1038-1043.
Fu C Q, Lyu X Y, Wang Y , et al. Simulation research on airborne LiDAR bathymetry system[J]. Journal of System Simulation, 2015,27(5):1038-1043.
[6] 丁凯, 李清泉, 朱家松 , 等. 运用MODIS遥感数据评测南海北部区域机载激光雷达测深系统参数[J]. 测绘学报, 2018,47(2):180-187.
Ding K, Li Q Q, Zhu J S , et al. Evaluation of airborne LiDAR bathymetric parameters on the northern South China Sea based on MODIS data[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(2):180-187.
[7] 李凯, 童晓冲, 张永生 , 等. 黄海、东海区域漫衰减系数光谱遥感反演及激光测深性能评估[J]. 遥感学报, 2015,19(5):761-769.
Li K, Tong X C, Zhang Y S , et al. Inversion of diffuse attenuation coefficient spectral in the Yellow Sea/East China Sea and evaluation of laser bathymetric performance[J]. Journal of Remote Sensing, 2015,19(5):761-769.
[8] 丁凯, 李清泉, 朱家松 , 等. 海南岛沿岸海域水体漫衰减系数光谱分析及LiDAR测深能力估算[J]. 光谱学与光谱分析, 2018,38(5):1582-1587.
Ding K, Li Q Q, Zhu J S , et al. Analysis of diffuse attenuation coefficient spectra of coastal waters of Hainan Island and performance estimation of airborne LiDAR bathymetry[J]. Spectroscopy and Spectral Analysis, 2018,38(5):1582-1587.
[9] Muirhead K, Cracknell A P . Airborne LiDAR bathymetry[J]. International Journal of Remote Sensing, 1986,7(5):597-614.
[10] Sizgoric S, Banic J, LaRocque P . The history of laser bathymetry[M]// Lampropoulos G A,Chrostowski J,Measures R M.Applications of Photonic Technology.Boston:Springer, 1995: 207-217.
[11] Fernandez-Diaz J C, Glennie C L, Carter W E , et al. Early results of simultaneous terrain and shallow water bathymetry mapping using a single-wavelength airborne LiDAR sensor[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(2):623-635.
[12] 秦海明, 王成, 习晓环 , 等. 机载激光雷达测深技术与应用研究进展[J]. 遥感技术与应用, 2016,31(4):617-624.
Qing H M, Wang C, Xi X H , et al. Development of airborne laser bathymetric technology and applications[J]. Remote Sensing Technology and Application, 2016,31(4):617-624.
[13] Feygels V I, Park J Y, Wozencraft J , et al. CZMIL(coastal zone mapping and imaging LiDAR):From first flights to first mission through system validation[C]// Ocean Sensing and Monitoring V, 2013.
[14] Aitken J, Ramnath V, Feygels V , et al. Prelude to CZMIL:Seafloor imaging and classification results achieved with CHARTS and the rapid environmental assessment (REA) processor[J]. Proceedings of SPIE-the International Society for Optical Engineering, 2010.
[15] Feygels V, Ramnath V, Marthouse R , et al. CZMIL as a rapid environmental disaster response tool[C]// Oceans.Aberdeen:IEEE, 2017.
[16] Gordon H R, Smith R C, Zaneveld J R V . Introduction to ocean optics[C]// Ocean Optics VII, 1980,208:14-55.
[17] Austin R W, Petzold T J . Spectral dependence of the diffuse attenuation coefficient of light in ocean waters[C]// Ocean Optics VII, 1984,489:168.
[18] 赵文静, 曹文熙, 胡水波 , 等. MODIS-Aqua漫射衰减产品Kd(490)在南海海域的精度对比[J]. 光学精密工程, 2018,26(1):14-24.
Zhao W J, Chao W X, Hu S B , et al. Comparison of diffuse attenuation coefficient of downwelling irradiance products derived from MODIS-Aqua in the South China Sea[J]. Optics and Precision Engineering, 2018,26(1):14-24.
[19] Werdell P J, Bailey S W . An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation[J]. Remote Sensing of Environment, 2005,98(1):122-140.
[1] 杜磊,陈洁,李敏敏,郑雄伟,李京,高子弘. 机载激光雷达技术在滑坡调查中的应用——以三峡库区张家湾滑坡为例[J]. 国土资源遥感, 2019, 31(1): 180-186.
[2] 成晓倩, 樊良新, 赵红强. 基于图像分割技术的城区机载LiDAR数据滤波方法[J]. 国土资源遥感, 2012, 24(3): 29-32.
[3] 王圣尧, 刘圣伟, 崔希民, 郭大海, 郑雄伟, 鲁潇. 机载激光雷达航带平差实验研究 ——基于参数模型和地面控制点数据[J]. 国土资源遥感, 2012, 24(2): 19-22.
[4] 徐宏根, 王建超, 郑雄伟, 吴芳, 李迁. 面向对象的植被与建筑物重叠区域的点云分类方法[J]. 国土资源遥感, 2012, 24(2): 23-27.
[5] 张峰, 薛艳丽, 李英成, 丁晓波. 基于SVM的多源遥感影像面向对象建筑物提取方法[J]. 国土资源遥感, 2008, 20(2): 27-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发