Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (2): 103-110    DOI: 10.6046/gtzyyg.2020.02.14
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
结合无人机载LiDAR点云法向量的K-means++聚类精简
李沛婷1,2,3, 赵庆展1,2,3(), 田文忠2,3,4, 马永建1,2,3
1.石河子大学信息科学与技术学院,石河子 832003
2.国家遥感中心新疆兵团分部,石河子 832003
3.兵团空间信息工程技术研究中心,石河子 832003
4.石河子大学机械电气工程学院,石河子 832003
Point cloud simplification method combining K-means++ clustering with UAV LiDAR point cloud normal vectors
Peiting LI1,2,3, Qingzhan ZHAO1,2,3(), Wenzhong TIAN2,3,4, Yongjian MA1,2,3
1. College of Information Science and Technology, Shihezi University, Shihezi 832003,China
2. Division of National Remote Sensing Center, Xinjiang Production and Construction Corps, Shihezi 832003, China
3. Geospatial Information Engineering Research Center,Xinjiang Production and Construction Corps, Shihezi 832003, China
4. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
全文: PDF(5942 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

点云精简可有效降低无人机载LiDAR数据量,对后期点云存储和快速处理具有重要意义。采用K-means++方法对点云法向量进行聚类,以实现点云精简。首先,利用回波次数去除多次回波点云,在使用零-均值标准化方法对点云属性归一化后,利用KD树(K-dimension tree)建立点云索引构建点云K邻域; 然后,采用主成分分析法估算点云法向量,借助肘方法确定最佳聚类数目; 最终,通过K-means++聚类方法实现点云精简。将精简结果生成Delaunay三角网并转换为栅格数据,通过相关系数验证方法的有效性。结果表明: 针对研究区69 544个点云数据,该方法可去除多次回波点云7 722个; 对点云法向量进行聚类数目为8的K-means++聚类,对应的精简率为分别为81.389%,81.833%和85.369%时效果较优; 精简后生成Delaunay三角网的时间远低于精简前,且当按81.833%进行精简处理时,相关系数最高,为0.890。该方法可为点云精简提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李沛婷
赵庆展
田文忠
马永建
关键词 点云K邻域点云法向量K-means++聚类Delaunay三角网    
Abstract

It is important to reduce the amount of unmanned aerial vehicle (UAV) light detection and ranging (LiDAR) data effectively based on point cloud simplification method, and this is of great significance for later point cloud storage and fast processing. The authors used K-means++ method to cluster point cloud normal vectors so as to achieve point cloud simplification. Firstly, the echo point cloud was removed by using the echo number. After that, the zero-mean normalization method was used to normalize the point cloud attribute information, and the KD tree (K-dimension tree) was used to establish the point cloud index so as to construct the point cloud K neighborhood. Then, the principal component analysis method was used to estimate the point cloud normal vector, and the optimal number of clusters was determined by the elbow method. Finally, the point cloud simplification was achieved by K-means++ clustering method. The simplified result was generated into a Delaunay triangulation and converted into raster data, and the validity of the method was verified by the correlation coefficient. The results show that this method can remove 7 722 points of multiple echo point clouds for 69 544 point cloud data in the study area; as for K-means++ clustering with a cluster number of 8 for the point cloud normal vector, the corresponding simplification rates were 81.389%, 81.833% and 85.369%, respectively. The time to generate the Delaunay triangulation after streamlining was much lower than that before the simplifying, with the simplification process being 81.833%, and the highest correlation coefficient was 0.890. This method can provide a reference for point cloud reduction.

Key wordspoint cloud K neighborhood    point cloud normal vector    K-means++ clustering method    Delaunay triangle
收稿日期: 2019-05-07      出版日期: 2020-06-18
:  TP79  
基金资助:国家重点研发计划项目“国土资源与生态环境安全监测系统”(2017YFB0504203);兵团科技计划项目(2016BA001)
通讯作者: 赵庆展
作者简介: 李沛婷(1993-),女,硕士研究生,主要研究方向为无人机载LiDAR点云数据处理。Email: sw_lpt@sina.com。
引用本文:   
李沛婷, 赵庆展, 田文忠, 马永建. 结合无人机载LiDAR点云法向量的K-means++聚类精简[J]. 国土资源遥感, 2020, 32(2): 103-110.
Peiting LI, Qingzhan ZHAO, Wenzhong TIAN, Yongjian MA. Point cloud simplification method combining K-means++ clustering with UAV LiDAR point cloud normal vectors. Remote Sensing for Land & Resources, 2020, 32(2): 103-110.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.02.14      或      https://www.gtzyyg.com/CN/Y2020/V32/I2/103
扫描仪参数 规格
扫描速度/(转·s-1) 10~200
最小测量距离/m 5
激光脉冲频率/kHz 550
测量精度/mm 15
角度分辨率/(°) 0.001
最大视场角/(°) 330
回波强度/bit 16
回波次数 无限
Tab.1  激光扫描仪Riegl VUX-1主要参数
Fig.1  研究区原始点云回波强度渲染结果
Fig.2  本文技术流程
Fig.3  研究区原始点云回波次数三维可视化结果
索引号 K邻域点云对应的索引号
1 45 1 44 46 142 141 461 222 346 462
2 46 0 2 47 142 45 143 462 463 3
3 3 1 47 48 46 463 143 4 464 556
Tab.2  部分点云K邻域对应的索引号
索引号 Xstan Ystan Zstan Instan
45 -1.362 -1.096 0.308 1.097
1 -1.340 -1.101 0.304 0.968
44 -1.378 -1.085 0.329 0.983
46 -1.344 -1.108 0.323 1.198
142 -1.345 -1.113 0.337 1.058
141 -1.360 -1.103 0.347 1.140
461 -1.380 -1.118 0.315 1.239
222 -1.375 -1.099 0.355 1.221
346 -0.609 -1.632 0.620 0.179
462 -1.362 -1.131 0.314 1.094
Tab.3  索引号1对应的点云属性信息
Fig.4  点云法向量可视化
Fig.5  聚类偏差结果
Fig.6  K-means++对法向量聚类的三维可视化
类别 聚类后的
点云个数
点云精简
率/%
点云回波强度误差
最小误差 最大误差
簇1 11 506 81.389 437 787
簇2 9 045 85.369 0 961
簇3 11 231 81.833 0 87
簇4 5 616 90.916 677 2 534
簇5 7 234 88.300 437 612
簇6 6 426 89.606 524 2 469
簇7 3 690 94.031 1 224 1 551
簇8 7 074 88.557 852 918
Tab.4  聚类后点云个数和强度误差统计
Fig.7  簇1、簇2和簇3对应点云的Delaunay三角网
点云精简
率/%
类别 三角网
数据/个
三角网顶
点数据/个
构建三角
网时间/s
相关系数
81.389 簇1 22 983 11 505 0.28 0.884
85.369 簇2 18 061 9 044 0.32 0.870
81.833 簇3 22 434 11 230 0.23 0.890
100 聚类前 123 578 61 809 1.01 1
Tab.5  聚类前后Delaunay三角网统计结果和相关系数
[1] 陈洁, 肖春蕾, 李京. 无检校场的机载LiDAR点云数据检校方法[J]. 国土资源遥感, 2015,27(4):27-33.doi: 10.6046/gtzyyg.2015.04.05.
Chen J, Xiao C L, Li J. Calibration of airborne LiDAR cloud point data with no calibration field[J]. Remote Sensing for Land and Resources, 2015,27(4):27-33.doi: 10.6046/gtzyyg.2015.04.05.
[2] Fink C M, Drohan P J. High resolution hydric soil mapping using LiDAR digital terrain modeling[J]. Soil Science Society of America Journal, 2016,80(2):355-363.
[3] 李凤霞, 饶永辉, 刘陈, 等. 基于法向夹角的点云数据精简算法[J]. 系统仿真学报, 2012,24(9):1980-1987.
Li F X, Rao Y H, Liu C, et al. Point cloud simplification based on angle between normal[J]. Journal of System Simulation, 2012,24(9):1980-1987.
[4] Zhao P C, Wang Y, Hu Q W. A feature preserving algorithm for point cloud simplification based on hierarchical clustering [C]//36th IEEE International Geoscience and Remote Sensing Symposium.Beijing:IGARSS, 2016: 5581-5584.
[5] 李仁忠, 杨曼, 刘阳阳, 等. 一种散乱点云的均匀精简算法[J]. 光学学报, 2017,37(7):97-105.
Li R Z, Yang M, Liu Y Y, et al. An uniform simplification algorithm for scattered point cloud[J]. Acta Optica Sinica, 2017,37(7):97-105.
[6] 陈龙. 散乱点云特征提取和聚类精简技术研究[D]. 西安:西南科技大学, 2017.
Chen L. Research on feature extraction and clustering simplification of scattered point cloud[D]. Xi’an:Southwest University of Science and Technology, 2017.
[7] 葛源坤. 基于曲率特征信息的散乱点云数据预处理技术研究[D]. 成都:西南交通大学, 2012.
Ge Y K. Research on data pre-processing technology of scattered point cloud based on curvatures feature[D]. Chengdu:Southwest Jiaotong University, 2012.
[8] 陈西江, 章光, 花向红. 于法向量夹角信息熵的点云简化算法[J]. 中国激光, 2015,42(8):336-344.
Chen X J, Zhang G, Hua X H. Point cloud simplification based on the information entropy of normal vector angle[J]. Chinese Journal of Lasers, 2015,42(8):336-344.
[9] Han H Y, Han X, Sun F S, et al. Point cloud simplification with preserved edge based on normal vector[J]. Optik, 2015,126(19):2157-2162.
doi: 10.1016/j.ijleo.2015.05.092
[10] 苏本跃, 马金宇, 彭玉升, 等. 基于K-means聚类的RGBD点云去噪和精简算法[J]. 系统仿真学报, 2016,28(10):2329-2341.
Su B Y, Ma J Y, Peng Y S, et al. Algorithm for RGBD point cloud denoising and simplification based on K-means clustering[J]. Journal of System Simulation, 2016,28(10):2329-2341.
[11] 唐林. 三维点云数据精简与压缩的研究[D]. 南京:东南大学, 2017.
Tang L. Research on 3D point cloud data simplification and compression[D]. Nanjing:Southeast University, 2017.
[12] Li X D, Li W, Jiang H Z, et al. Automatic evaluation of machining allowance of precision castings based on plane features from 3D point cloud[J]. Computers in Industry, 2013,64(9):1129-1137.
doi: 10.1016/j.compind.2013.06.003
[13] 李乐林, 江万寿, 郭程方. 基于区域多次回波点密度分析的城区LiDAR建筑物提取[J]. 国土资源遥感, 2015,27(2):29-35.doi: 10.6046/gtzyyg.2015.02.05.
doi: 10.6046/gtzyyg.2015.02.05
Li L L, Jiang W S, Guo C F. Classification of LiDAR point clouds in urban areas based on the analysis of regional multi-return density[J]. Remote Sensing for Land and Resources, 2015,27(2):29-35.doi: 10.6046/gtzyyg.2015.02.05.
[14] Cai Z P, Wang C, Wen C L, et al. Occluded boundary detection for small-footprint ground borne LiDAR point cloud guided by last echo[J]. IEEE Geoscience and Remote Sensing Letters, 2015,12(11):2272-2276.
doi: 10.1109/LGRS.8859
[15] Visalakshi N K, Thangavel K. Impact of normalization in distributed K-means clustering[J]. International Journal of Soft Computing, 2009,4(4):168-172.
[16] 樊丽, 刘晋浩, 黄青青. 基于特征融合的林下环境点云分割[J]. 北京林业大学学报, 2016,38(5):133-138.
Fan L, Liu J H, Huang Q Q. Point cloud segmentation algorithm based on feature fusion used for understory environments[J]. Journal of Beijing Forestry University, 2016,38(5):133-138.
[17] 蔡志敏, 王晏民, 黄明. 基于KD树散乱点云数据的Guass平均曲率精简算法[J].测绘通报, 2013(s1):44-46.
Cai Z M, Wang Y M, Huang M. Guass mean curvature reduction algorithm based on KD tree scattered point cloud data[J].Bulletin of Surveying and Mapping, 2013(s1):44-46.
[18] 彭占伟. 基于K近邻的点云数据处理研究[D]. 昆明:昆明理工大学, 2014.
Peng Z W. Research on point cloud data processing based on K-nearest neighbor[D]. Kunming:Kunming University of Science and Technology, 2014.
[19] 陈永辉. 基于激光扫描的三维点云数据处理技术研究[D]. 北京:中国科学技术大学, 2017.
Chen Y H. Research on data processing techniques based on laser scanning 3D point clouds[D]. Beijing:University of Science and Technology of China, 2017.
[20] 邢正全, 邓喀中, 薛继群. 基于栅格划分和法向量估计的点云数据压缩[J].测绘通报, 2012(7):50-52.
Xing Z Q, Deng K Z, Xue J Q. Point cloud data compression based on grid division and normal vector estimation[J].Bulletin of Surveying and Mapping, 2012(7):50-52.
[21] 陈龙, 蔡勇, 张建生. 自适应K-means聚类的散乱点云精简[J]. 中国图象图形学报, 2017,22(8):1089-1097.
Chen L, Cai Y, Zhang J S. Adaptive K-means clustering simplification of scattered point cloud[J]. Journal of Image and Graphics, 2017,22(8):1089-1097.
[22] 赵越, 周萍. 改进的K-means算法在遥感图像分类中的应用[J]. 国土资源遥感, 2011,23(2):87-90.doi: 10.6046/gtzyyg.2011.02.16.
doi: 10.6046/gtzyyg.2011.02.16
Zhao Y, Zhou P. An improved K-means algorithm for remote sensing classification[J]. Remote Sensing for Land and Resources, 2011,23(2):87-90.doi: 10.6046/gtzyyg.2011.02.16.
[23] Sebastian Raschka. Python machine learning[M] //Beijing: China Machine Press, 2015.
[24] 张素洁, 赵怀慈. 最优聚类个数和初始聚类中心点选取算法研究[J]. 计算机应用研究, 2017,34(6):1617-1620.
Zhang S J, Zhao H C. Application research of computers study on the optimal number of clusters and the selection algorithm of initial cluster centers[J]. Application Research of Computers, 2017,34(6):1617-1620.
[25] Yang Z, Liu X, Hu Z W, et al. Seamless service handoff based on Delaunay triangulation for mobile cloud computing[J]. Wireless Personal Communications, 2017,93(3):795-809.
doi: 10.1007/s11277-014-2229-6
[1] 朱军桃, 王雷, 赵传, 郑旭东. 基于区域生长算法的复杂建筑物屋顶点云分割[J]. 国土资源遥感, 2019, 31(4): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发