Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (2): 162-169    DOI: 10.6046/gtzyyg.2020.02.21
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
新疆克拉牙依拉克冰川变化(1973—2016)主被动遥感监测分析
冯力力1,2, 江利明1,2(), 柳林3, 孙亚飞4
1.中国科学院精密测量科学与技术创新研究院大地测量与地球动力学国家重点实验室,武汉 430071
2.中国科学院大学,北京 100049
3.华中科技大学物理学院引力实验中心,武汉 430074
4.河南城建学院,平顶山 467036
Karayaylak glacier changes in the Kongur Mountain of eastern Pamir between 1973 and 2016 based on active and passive remote sensing technologies
Lili FENG1,2, Liming JIANG1,2(), Lin LIU3, Yafei SUN4
1. State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
2. University of Chinese Academy of Sciences, Beijing 100049,China
3. MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
4. Henan University of Urban Construction, Pingdingshan 467036, China
全文: PDF(4029 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

2015年5月,新疆克拉牙依拉克冰川西支发生跃动,本文利用1973年美国锁眼(Key Hole)卫星光学遥感数据、2000年的美国SRTM DEM数据以及2013年、2016年的TanDEM-X双站InSAR数据,获取了1973—2016年克拉牙依拉克冰川的表面高程变化情况。结果表明,1973—2013年,克拉牙依拉克冰川积累区出现轻微高程减薄,2013—2016年,西支冰川末端表面高程增厚明显,冰川上部则出现清晰的表面高程减薄; 利用2013—2016年Landsat ETM+光学遥感数据监测了冰川表面运动速度变化,发现西支冰川从2015年4月中开始活动强烈,到跃动发生时,运动速度到达顶峰。综合分析认为,跃动发生前该冰川末端未出现明显前进或者后退的趋势,而冰川流速发生了较大的变化; 此外,结合气象站点数据结果,认为该冰川此次跃动与局部气候变化关系不大,跃动的主要原因很可能为冰川自身结构变化,为本区域冰川灾害预警机制的建立提供了数据基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯力力
江利明
柳林
孙亚飞
关键词 克拉牙依拉克冰川冰川跃动主被动遥感监测高程变化冰川流速    
Abstract

Located on the northern slope of Kongur Mountains, Karayaylak glacier surged in May 2015. For the purpose of obtaining the glacier surface elevation changes of the Karayaylak glacier from 1973 to 2016, the authors used the 1973 Keyhole satellite optical remote sensing data, the US SRTM DEM data in 2000, and the TanDEM-X bistatic SAR data in 2013 and 2016. The results show that, from 1973 to 2013, there was no obvious elevation change; from 2013 to 2016, clear surface thickening was observed at the terminus of the west branch, whereas a relatively obvious glacial surface elevation thinning was detected in the upper part of the glacier. Landsat OLI image from 2013 to 2015 were employed to monitor the change of glacier surface velocities. The distributions and changes of the glacier surface velocities indicate that the western tributary of Karayaylak glacier moved faster than any other tributaries. According to the comprehensive analysis, it is considered that there is no obvious advance or retreat trend at the terminus of the glacier before glacier surge, and the flow velocity of the glacier has changed greatly. In addition, combined with the results of meteorological data, it is believed that the glacial surge has little to do with local climate change. The main reason for the surge is probably attributed to the structural change of the glacier itself.

Key wordsKarayaylak glacier    glacier surge    active and passive remote sensing    glacier elevation change    glacier flow velocity
收稿日期: 2019-08-28      出版日期: 2020-06-18
:  P228  
  P343.6  
基金资助:国家重点研发计划项目“全球山地冰川物质平衡及要素的观测与反演”(2017YFA0603103);国家自然科学基金重点项目“喀喇昆仑-喜马拉雅冰川物质平衡的空间大地测量研究”共同资助(41431070)
通讯作者: 江利明
作者简介: 冯力力(1995-),女,硕士研究生,主要从事主被动遥感冰川监测研究。Email: fenglili17@mails.ucas.edu.cn。
引用本文:   
冯力力, 江利明, 柳林, 孙亚飞. 新疆克拉牙依拉克冰川变化(1973—2016)主被动遥感监测分析[J]. 国土资源遥感, 2020, 32(2): 162-169.
Lili FENG, Liming JIANG, Lin LIU, Yafei SUN. Karayaylak glacier changes in the Kongur Mountain of eastern Pamir between 1973 and 2016 based on active and passive remote sensing technologies. Remote Sensing for Land & Resources, 2020, 32(2): 162-169.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.02.21      或      https://www.gtzyyg.com/CN/Y2020/V32/I2/162
Fig.1  研究区域及遥感数据分布情况
(底图为2018年04月05日Landsat 8影像)
数据源 日期 空间分
辨率/m
用途
SRTM DEM 2000-02-11/22 30 获取冰川表面高程
Key Hole 1973-08-04 6~9 获取冰川表面高程、物质平衡
TanDEM-X
双站SAR
2013-11-01 3 获取冰川表面高程
2016-09-12 3 获取冰川表面高程
Landsat OLI 2013-09-07 15 提取冰川边界、获取冰川
表面运动速度
2015-06-17 15 提取冰川边界
2016-06-01 15 提取冰川边界
2017-10-20 15 提取冰川边界
2018-04-30 15 提取冰川边界
Landsat OLI 2014-09-26 15 获取冰川表面运动速度
2015-04-13 15 获取冰川表面运动速度
2015-04-29 15 获取冰川表面运动速度
2015-05-08 15 获取冰川表面运动速度
2015-05-15 15 获取冰川表面运动速度
2015-07-11 15 获取冰川表面运动速度
2015-08-12 15 获取冰川表面运动速度
2016-05-01 15 获取冰川表面运动速度
中国第二次
冰川编目
2009年 冰川边界参考
Tab.1  研究使用数据概览
双站SAR影像ID 获取时间 极化方式 轨道 垂直基线 模糊度 中心入射角/℃
dims_op_oc_dfd2_578247212_1 2013-11-01 HH D 97.524 8 -82.042 46.185 3
dims_op_oc_dfd2_578247212_2 2016-09-12 HH D 128.461 6 58.656 44.562 3
Tab.2  TanDEM-X双站InSAR数据参数列表
Fig.2  TDX双站InSAR生成DEM技术流程图
Fig.3  KH-9 DEM提取技术流程图
Fig.4  1973—2000年、2000—2013年及2013—2016年克拉牙依拉克冰川表面高程变化
Fig.5  1972—2016年克拉牙依拉克冰川西支末端变化情况
Fig.6  2013—2015年克拉牙依拉克冰川表面日平均流速
[1] Meier Mark F, Post Post Austin. What are glacier surges?[J]. Canadian Journal of Earth Sciences, 1969,6(4):807.
doi: 10.1139/e69-081
[2] Kamb B, Raymond C F, Harrison W D, et al. Glacier surge mechanism:1982—1983 surge of variegated glacier,Alaska[J]. Science, 1985,227(4686):469-479.
doi: 10.1126/science.227.4686.469
[3] Luckman A.Karakoram glacier surge dynamics[J].Geophysical Research Letters, 2011, 38(18):n/a-n/a.
[4] Citterio M, Paul F, Ahlstrøm A P, et al. Remote sensing of glacier change in West Greenland:Accounting for the occurrence of surge-type glaciers[J]. Annals of Glaciology, 2009,50(53):70-80.
doi: 10.3189/172756410790595813
[5] Copland L, Sylvestre T, Bishop M P, et al. Expanded and recently increased glacier surging in the Karakoram[J]. Arctic Antarctic & Alpine Research, 2011,43(4):503-516.
[6] Fischer A, Rott H, Björnsson H. Observation of recent surges of Vatnajökull,Iceland,by means of ERS SAR interferometry[J]. Annals of Glaciology, 2003,37(1):69-76.
[7] Jiskoot H, Murray T, Luckman A. Surge potential and drainage-basin characteristics in East Greenland[J]. Annals of Glaciology, 2017,36(1):142-148.
[8] Kotlyakov V M, Osipova G B, Tsvetkov D G. Monitoring surging glaciers of the Pamirs,central Asia,from space[J]. Annals of Glaciology, 2008,48(1):125-134.
[9] Dowdeswell Julian A, Williams M. Surge-type glaciers in the Russian High Arctic identified from digital satellite imagery[J]. Journal of Glaciology, 1997,43(145):489-494.
doi: 10.1017/S0022143000035097
[10] Kotlyakov V M, Rototaeva O V, Nosenko G A. The September 2002 Kolka glacier catastrophe in north Ossetia,Russian Federation:Evidence and analysis[J]. Mountain Research & Development, 2014,24(Feb 2004):78-83.
[11] Sevestre Heïdi, Benn Douglas I. Climatic and geometric controls on the global distribution of surge-type glaciers:Implications for a unifying model of surging[J]. Journal of Glaciology, 2015,61(228):646-662.
[12] 上官冬辉, 刘时银, 丁永建, 等. 喀喇昆仑山克勒青河谷近年来发现有跃动冰川[J]. 冰川冻土, 2005,27(5):641-644.
Shangguan D H, Liu S Y, Ding Y J, et al. Surging glacier found in Shaksgam River,Karakorum Mountains[J]. Journal of Glacioligy and Geocryology, 2005,27(5):641-644.
[13] 郭万钦, 刘时银, 许君利, 等. 木孜塔格西北坡鱼鳞川冰川跃动遥感监测[J]. 冰川冻土, 2012,34(4):765-774.
Guo W Q, Liu S Y, Xu J L, et al. Monitoring recent surging of the Yulinchuan glacier on north slopes of Muztag range by remote sensing[J]. Journal of Glaciology and Geocryology, 2012,34(4):765-774.
[14] 刘景时, 王迪. 2009年夏季喀喇昆仑山叶尔羌河上游发生冰川跃动[J]. 冰川冻土, 2009,31(5):992.
Liu J S, Wang D. Glacier surge in the upper reaches of the Yarkant River in the Karakorum Mountains in 2009[J]. Journal of Glaciology and Geocrylolgy, 2009,31(5):992-992.
[15] Kääb A, Leinss S, Gilbert A, et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 2018,11(2):1.
[16] Farr T G, Rosen P A, Caro E, et al. The Shuttle Radar Topography Mission[J]. Reviews of Geophysics, 2007,45(2):361.
[17] González J H, Antony J M W, Bachmann M,et al.Bistatic system and baseline calibration in TanDEM-X to ensure the global digital elevation model quality[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2012,73(3):3-11.
[18] Martone,Michele,Braitogam,et al.Coherence evaluation of TanDEM-X interferometric data[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2012,73(6):21-29.
[19] Gruber A, Wessel B, Huber M, et al. Operational TanDEM-X DEM calibration and first validation results[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2012,73(6):39-49.
[20] Rizzoli P, Bräutigam B, Kraus T, et al. Relative height error analysis of TanDEM-X elevation data[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2012,73(6):30-38.
[21] Rossi C, Fritz T, Eineder M, et al. Towards AN Urban DEM Generation with Satellite SAR Interferometry[R]. Isprs, 2012.
[22] Bolch T, Pieczonka T, Mukherjee K, et al. Brief communication:Glaciers in the Hunza catchment(Karakoram) have been nearly in balance since the 1970s[J]. Cryosphere, 2017,11(531):531-539.
doi: 10.5194/tc-11-531-2017
[23] Huber M, Wessel B, Kosmann D, et al. Ensuring globally the TanDEM-X height accuracy:Analysis of the reference data sets ICESat,SRTM and KGPS-tracks[C].Geoscience and Remote Sensing Symposium,2009 IEEE International,Igarss, 2009.
[24] Gonzalez J H, Bachmann M, Scheiber R, et al. Definition of ICESat selection criteria for their use as height references for TanDEM-X[J]. IEEE Transactions on Geoscience & Remote Sensing, 2010,48(6):2750-2757.
[25] Sun Y, Jiang L M, Liu L, et al. Mapping glacier elevations and their changes in the western Qilian Mountains,northern Tibetan Plateau, by Bistatic InSAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017,(99):1-11.
[26] Zhou Y S, Li Z W, Jia L. Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM[J]. Journal of Glaciology, 2017,63(238):331-342.
[27] Leprince S, Barbot S, Ayoub F, et al. Automatic and precise orthorectification,coregistration,and subpixel correlation of satellite images,application to ground deformation measurements[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007,45(6):1529-1558.
[28] Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area(Nepal Himalaya) derived from stereo imagery[J]. Cryosphere, 2011,5(2):349-358.
doi: 10.5194/tc-5-349-2011
[29] Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999—2011[J]. Cryosphere, 2013,7(6):1885-1886.
doi: 10.5194/tc-7-1885-2013
[30] 蒋宗立, 刘时银, 龙四春, 等. 基于合成孔径雷达技术及DEM的公格尔山冰川动力特征分析[J]. 冰川冻土, 2014,36(2):286-295.
doi: 10.7522/j.issn.1000-0240.2014.0035
Jiang Z L, Liu S Y, Long S C, et al. Analysis of the glacier dynamics features in Kongur Mountain based on SAR technology and DEMs[J]. Journal of Glaciology and Geocryology, 2014,36(2):286-295.
doi: 10.7522/j.issn.1000-0240.2014.0035
[31] Quincey D J, Glasser N F, Cook S J, et al. Heterogeneity in Karakoram glacier surges[J]. Journal of Geophysical Research Earth Surface, 2015,120(7):1288-1300.
doi: 10.1002/2015JF003515
[32] Kamb B. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system[J]. Journal of Geophysical Research:Solid Earth, 1987,92(B9):9083-9100.
[33] Fowler C A. A theory of glacier surges[J]. Journal of Geophysical Research Solid Earth, 1987,92(B9):9111-9120.
[34] Benn D I, Evans D J A.Glaciers and glaciation[J]. Hodder Education, 2010,29(3):869-875.
[35] Clarke G K C, Collins S G, Thompson D E. Flow,thermal structure,and subglacial conditions of a surge-type glacier[J]. Canadian Journal of Earth Sciences, 1984,21(2):232-240.
doi: 10.1139/e84-024
[36] Mayer C, Fowler A C, Lambrecht A, et al. A surge of North Gasherbrum Glacier, Karakoram,China[J].Journal of Glaciology, 2011, volume 57(205): 904-916(913).
[37] Murray T, Stuart G W, Miller P J, et al. Glacier surge propagation by thermal evolution at the bed[J]. Journal of Geophysical Research Solid Earth, 2000,105(B6):13491-13507.
[38] Chevalier M L. 青藏高原西部喀喇昆仑断裂活动构造研究进展综述(英文)[J]. 地球学报, 2019,40(1):37-54.
Chevalier M L. Active tectonics along the Karakorum fault,western Tibetan Plateau:A review[J]. Acta Geoscientia Sinica, 2019,40(1):37-54.
[1] 蒋宗立, 张俊丽, 张震, 刘时银, 魏俊锋, 郭万钦, 祝传广, 黄丹妮. 1972—2011年东昆仑山木孜塔格峰冰川面积变化与物质平衡遥感监测[J]. 国土资源遥感, 2019, 31(4): 128-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发