Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (2): 170-176    DOI: 10.6046/gtzyyg.2020.02.22
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
长江经济带废弃矿山占损土地遥感调查与生态修复对策
殷亚秋, 杨金中, 汪洁, 安娜, 姜赟
中国自然资源航空物探遥感中心,北京 100083
Remote sensing survey of land occupied and damaged by abandoned mines along the Yangtze River Economic Belt and research on ecological remediation countermeasures
Yaqiu YIN, Jinzhong YANG, Jie WANG, Na AN, Yun JIANG
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
全文: PDF(2116 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

长江经济带是我国的重要矿产资源基地,在矿产资源开发过程中引发的生态环境问题突出。为调查该区域废弃露天矿山占用损毁土地情况和研究生态环境修复对策,以2016—2018年国产高空间分辨率遥感影像为主要数据源,利用遥感解译和信息提取技术,获取长江经济带内距长江干流(包括金沙江四川、云南段,四川宜宾至入海口)及主要支流(包含岷江、沱江、赤水河、嘉陵江、乌江、清江、湘江、汉江、赣江)两岸50 km范围内废弃露天矿山的分布信息和10 km范围内与矿山相关的地质灾害和环境污染信息。调查结果表明,在距长江干流5 km,10 km,15 km,30 km和50 km范围内,废弃露天矿山占用损毁土地面积分别为4 655.14 hm2,8 787.57 hm2,12 207.59 hm2,21 040.85 hm2和30 034.47 hm2; 在距长江主要支流5 km,10 km,15 km,30 km和50 km范围内废弃露天矿山占用损毁土地面积分别为5 080.04 hm2,8 644.25 hm2,12 345.53 hm2,21 290.29 hm2和33 491.49 hm2。基于遥感调查结果对距长江干流及主要支流两岸各10 km范围内的废弃露天矿山环境进行分析,结果表明,长江上游主要问题是露天开采导致的地质灾害; 长江中下游金属类、化工原料类矿山引发的环境污染比较严重。结合目前矿山环境修复的先进技术,研究并提出了矿山生态环境修复的对策,即采用降坡削坡、加固稳定的方法消除废弃采场的崩塌隐患,根据坡度大小采用相应的复绿技术来防止水土流失; 采用人工隔水层、人工增肥和微生物法进行土壤改良; 引进耐受植物、微生物降解土壤中的有毒重金属; 构建人工湿地进行水生态修复。调查结果和建议可为当地矿政管理部门开展废弃露天矿山生态环境修复工作提供科学依据和重要参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷亚秋
杨金中
汪洁
安娜
姜赟
关键词 长江经济带废弃露天矿山遥感生态修复    
Abstract

The Yangtze River Economic Belt is an important mineral resource base in China. Ecological and environmental problems caused by mineral resources exploitation are outstanding. In order to survey the situation of the land occupied and damaged by abandoned open-pit mines in this area and study the ecological remediation countermeasures, based on the domestic high spatial resolution remote sensing images acquired in 2016—2018 as the main data source, the authors used the techniques of remote sensing interpretation and information extraction to obtain the distribution information of the land occupied and damaged by abandoned open-pit mines in the range 50 km on the both sides of the main channel of the Yangtze River, which included Jinsha River in Sichuan and Yunnan Province and Yangtze River from Yibin to the estuary and the main tributaries which included Minjiang River, Tuojiang River, Chishui River, Jialing River, Wujiang River, Qingjiang River, Xiangjiang River, Hanjing River and Ganjiang River in the Yangtze River Economic Belt, and the geological hazard and environmental pollution information related to mining in the range of 10 km on the both sides of the river. The results show that in the range of 5 km, 10 km, 30 km, and 50 km from the main stream, the areas of the land occupied and damaged by abandoned open-air mines are 4 655.14 hm2, 8 787.57 hm2, 12 207.59 hm2, 21 040.85 hm2 and 30 034.47 hm2 respectively, and that for tributaries are 5 080.04 hm2, 8 644.25 hm2, 12 345.53 hm2, 21 290.29 hm2 and 33 491.49 hm2 respectively. Based on the results of remote sensing survey, the authors analyzed the environment of the abandoned open-air mines in the range of 10 km on the both sides of the Yangtze River main channel and main tributaries. The results show that the main problem in the upper reaches of the Yangtze River is that geological disasters caused by open mining and environmental pollution caused by metal and chemical raw material mines in the middle and lower reaches of the Yangtze River are quite serious. Combined with the advanced technology of mine environmental restoration, the authors put forward the countermeasures of mine ecological environmental restoration. Methods of slope reduction, slope cutting and slope reinforcement can be adopted to eliminate the hidden danger of collapse. Different green technologies can be used to prevent soil erosion according to the slope size. Artificial barrier layer, artificial fertilizer and microbial methods can be used for soil improvement. Toxic heavy metals in soil can be degraded by tolerant plants and microorganisms. Constructed wetlands can be built for water ecological restoration. The survey results and suggestions presented in this paper would provide the scientific bases and important references for the local mining administration on the ecological environmental remediation of the abandoned open-pit mines.

Key wordsYangtze River Economic Belt    abandoned open-air mine    remote sensing    ecological remediation
收稿日期: 2019-07-12      出版日期: 2020-06-18
:  TP79  
基金资助:中国地质调查项目“全国矿山环境恢复治理状况遥感地质调查与监测”(DD20190705);“‘高分辨率动态监测相机及应用技术’高速实时数据在国土资源领域的应用研究”和“全国矿产资源开发环境遥感监测项目”(DD20160075)
作者简介: 殷亚秋(1990-),女,硕士,工程师,主要研究方向为矿产资源遥感监测。Email: yinyaqiu@126.com。
引用本文:   
殷亚秋, 杨金中, 汪洁, 安娜, 姜赟. 长江经济带废弃矿山占损土地遥感调查与生态修复对策[J]. 国土资源遥感, 2020, 32(2): 170-176.
Yaqiu YIN, Jinzhong YANG, Jie WANG, Na AN, Yun JIANG. Remote sensing survey of land occupied and damaged by abandoned mines along the Yangtze River Economic Belt and research on ecological remediation countermeasures. Remote Sensing for Land & Resources, 2020, 32(2): 170-176.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.02.22      或      https://www.gtzyyg.com/CN/Y2020/V32/I2/170
Fig.1  研究区分布
Fig.2  废弃露天矿山高分一号真彩色遥感影像
Fig.3  废弃露天矿山信息提取流程
地区 5 km范围 10 km范围 15 km范围 30 km范围 50 km范围
江苏 291.63 1 187.99 2 338.67 4 177.33 5 191.20
安徽 194.08 731.11 1 306.16 2 536.47 4 132.27
江西 236.24 673.19 772.13 1 190.80 1 574.38
湖北 1 088.19 1 590.39 1 940.11 3 977.35 5 290.30
湖南 98.31 146.08 214.48 563.89 1 318.31
重庆 976.82 1 696.49 2 159.04 3 260.65 4 679.67
四川 893.59 1 283.77 1 526.01 1 966.55 2 281.69
贵州 0 0 0 12.18 18.18
云南 876.28 1 478.55 1 950.99 3 355.63 5 548.47
合计 4 655.14 8 787.57 12 207.59 21 040.85 30 034.47
Tab.1  长江干流废弃露天矿山占损土地统计
Fig.4  长江干流废弃露天矿山占用损毁土地分布
地区 5 km范围 10 km范围 15 km范围 30 km范围 50 km范围
江西 313.46 925.57 1 472.22 3 128.47 5 142.81
湖北 619.88 895.91 1 386.06 2 434.32 3 815.74
湖南 1 127.91 2 250.97 3 473.37 6 147.63 9 452.11
重庆 638.28 1 057.38 1 409.96 2 430.43 3 724.17
四川 1 855.27 2 474.40 3 053.94 4 236.79 5 543.02
贵州 453.87 860.89 1 186.44 2 287.64 4 881.63
云南 71.37 179.13 363.54 625.01 932.01
合计 5 080.04 8 644.25 12 345.53 21 290.29 33 491.49
Tab.2  长江主要支流废弃露天矿山占损土地统计
Fig.5  长江主要支流废弃露天矿山占用损毁土地分布
[1] 朱道才, 任以胜, 徐慧敏, 等. 长江经济带空间溢出效应时空分异[J]. 经济地理, 2016,36(6):26-33.
Zhu D C, Ren Y S, Xu H M, et al. The spatial-temporal differentiation of spatial spillover effect in Yangtze River Economic Belt[J]. Economic Geography, 2016,36(6):26-33.
[2] 肖庆文. 长江经济带生态补偿机制深化研究[J].科学发展, 2019(5):74-85.
Xiao Q W. Deep research on ecological compensation mechanism of the Yangtze River Economic Belt[J].Scientific Development, 2019(5):74-85.
[3] 樊莉, 文学虎, 张璇. 服务长江经济带绿色协调发展——四川局创新开展地理国情监测工作纪实[J].中国测绘, 2018(6):37-40.
Fan L, Wen X H, Zhang X. Serving the green coordinated development of the Yangtze River Economic Belt:The documentary of Sichuan Bureau’s innovation and implementation of geographical situation monitoring[J].China Surveying and Mapping, 2018(6):37-40.
[4] 殷缶, 梅深. 长江经济带发展上升为国家战略[J]. 水道港口, 2016,37(2):134.
Yin F, Mei S. The development of the Yangtze River Economic Belt has risen to the national strategy[J]. Journal of Waterway and Harbor, 2016,37(2):134.
[5] 陈建波. 区域经济视角下三峡工程系统服务长江经济带科学发展研究[D]. 武汉:武汉大学, 2017.
Chen J B. Research on the scientific development of the Yangtze River Economic Belt serving the three gorges project from the perspective of regional economy[D]. Wuhan:Wuhan University, 2017.
[6] 吴传清, 黄磊. 长江经济带绿色发展的难点与推进路径研究[J].南开学报(哲学社会科学版), 2017(3):50-61.
Wu C Q, Huang L. The difficulties and approaches of green development in the Yangtze River Economic Belt[J].Nankai Journal(Philosophy,Literature and Social Science Edition), 2017(3):50-61.
[7] 李想, 乌日娜, 郭志起, 等. 长江经济带建设与林业发展关系分析[J]. 林业经济, 2016,38(11):30-35.
Li X, Wu R N, Guo Z Q, et al. Analysis on the relationship between Yangtze River Economic Belt and forestry development[J].Forestry Economics, 2016(11):30-35.
[8] 李干杰. 坚持走生态优先、绿色发展之路扎实推进长江经济带生态环境保护工作[J]. 环境保护, 2016,44(11):7-13.
Li G J. Adhere to the ecological priority,green development and advance the Yangtze River Economic Belt of the ecological environment protection work[J]. Environmental Protection, 2016,44(11):7-13.
[9] 周飞. 湖北长江经济带小城市发展研究[D]. 武汉:华中师范大学, 2014.
Zhou F. Research on the development of small cities in the Yangtze River Economic Zone of Hubei Province[D]. Wuhan:Central China Normal University, 2014.
[10] 王钰, 张一诺, 张兴国. 2017 年两会政府工作报告中的林业生态看点[J]. 宁夏林业, 2017(2):8-10.
Wang Y, Zhang Y N, Zhang X G.Forestry ecology in the report on the work of the goverment of the two Sessions in 2017[J]. Ningxia Forestry Communication, 2017(2):8-10.
[11] 张玉韩, 王步清, 侯华丽. 长江经济带矿业产业协调发展研究[J]. 中国矿业, 2018,25(8):58-63.
Zhang Y H, Wang B Q, Hou H L. Research on the mining industry coordinated development of the Yangtze River Economic Belt[J]. China Mining Magazine, 2018,25(8):58-63.
[12] 刘立, 高俊华, 余德清. 基于遥感的湖南省矿山占地监测与分析[J]. 地理空间信息, 2019,17(1):41-46,11.
Liu L, Gao J H, Yu D Q. Monitoring and analysis of mine land occupation in Hunan Province based on remote sensing[J]. Geospatial Information, 2019,17(1):41-46,11.
[13] 管青春, 郝晋珉, 王宏亮, 等. 经济转型视角下矿产资源城市生态敏感性评价[J]. 农业工程学报, 2018,34(21):253-262,311.
Guan Q C, Hao J M, Wang H L, et al. Evaluation of ecological sensitivity of mineral resources city under economic transformation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(21):253-262,311.
[14] 唐荣彬, 付梅臣, 陈勇. 控制采矿干扰扩散的生态关键地段识别研究——以大冶市为例[J].金属矿山, 2018(3):161-167.
Tang R B, Fu M C, Chen Y. Identification of ecological critical portion by controlling the diffusion of mining disturbance:A case of Daye City[J].Metal Mine, 2018(3):161-167.
[15] 李国政. 绿色发展视阈下矿山地质修复模式的升级与重塑[J]. 中国矿业大学学报(社会科学版), 2019,21(3):92-104.
Li G Z. Upgrading and reshaping of mine geological remediation mode from the perspective of green development[J]. Journal of China University of Mining and Technology(Social Sciences), 2019,21(3):92-104.
[16] 张超, 吕雅慧, 郧文聚, 等. 土地整治遥感监测研究进展分析[J]. 农业机械学报, 2019,50(1):1-22.
Zhang C, Lyu Y H, Yun W J, et al. Analysis on research progress of remote sensing monitoring of land consolidation[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019,50(1):1-22.
[17] 查东平, 申展, 刘足根, 等. 基于TM影像的德兴铜矿区生态环境变化[J]. 国土资源遥感, 2015,27(4):109-114.doi: 10.6046/gtzyyg.2015.04.17.
Zha D P, Shen Z, Liu Z G, et al. Changes of ecological environment in the Dexing copper mine based on TM images[J]. Remote Sensing for Land and Resources, 2015,27(4):109-114.doi: 10.6046/gtzyyg.2015.04.17.
[18] 杨金中, 聂洪峰, 荆青青. 初论全国矿山地质环境现状与存在问题[J]. 国土资源遥感, 2017,29(2):1-7.doi: 10.6046/gtzyyg.2017.02.01.
Yang J Z, Nie H F, Jing Q Q. Preliminary analysis of mine geo-environment status and existing problems in China[J]. Remote Sensing for Land and Resources, 2017,29(2):1-7.doi: 10.6046/gtzyyg.2017.02.01.
[19] 陈书琳, 毕银丽. 遥感技术在微生物复垦中的应用研究[J]. 国土资源遥感, 2014,26(3):16-23.doi: 10.6046/gtzyyg.2014.03.03.
Chen S L, Bi Y L. Application of remote sensing technology to microbial reclamation[J]. Remote Sensing for Land and Resources, 2014,26(3):16-23.doi: 10.6046/gtzyyg.2014.03.03.
[20] 刘海波. 地质灾害治理工程施工中边坡稳定问题及滑坡治理方法[J].西部探矿工程, 2015(8):5-7,9.
Liu H B. Slope stability problem and landslide control method in construction of geological hazard control project[J].West-China Exploration Engineering, 2015(8):5-7,9.
[21] 罗祥明, 王路. 库区高陡边坡破坏模式机理与模拟研究[J]. 山西建筑, 2018,44(3):78-80.
Luo X M, Wang L. Along the high and steep slope rock mass mechanism analysis and control measures of the collapse[J]. Shanxi Architecture, 2018,44(3):78-80.
[22] 付江涛, 李光莹, 虎啸天, 等. 植物固土护坡效应的研究现状及发展趋势[J]. 工程地质学报, 2014,22(6):1135-1146.
doi: 10.13544/j.cnki.jeg.2014.06.018
Fu J T, Li G Y, Hu X T, et al. Research status and development tendency of vegetation effects to soil reinforcement and slope stabilization[J]. Journal of Engineering Geology, 2014,22(6):1135-1146.
doi: 10.13544/j.cnki.jeg.2014.06.018
[1] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[4] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[7] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[8] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[9] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[10] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[13] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[14] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[15] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发