Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (3): 1-7    DOI: 10.6046/gtzyyg.2020.03.01
  综述 本期目录 | 过刊浏览 | 高级检索 |
溢油阻尼散射机制遥感监测研究进展
刘玉芳1(), 邹亚荣2,3(), 梁超2,3
1.航天宏图信息技术股份有限公司,北京 100195
2.国家卫星海洋应用中心,北京 100081
3.自然资源部空间海洋遥感与应用重点实验室,北京 100081
Progress in remote sensing detection of oil spill damping mechanism
LIU Yufang1(), ZOU Yarong2,3(), LIANG Chao2,3
1. PIESAT Information Technology Company, Beijing 100195, China
2. National Ocean Satellite Application Center, MNR, Beijing 100081, China
3. Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing 100081, China
全文: PDF(752 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

溢油是海洋环境的主要污染源之一,及早监测与发现对保护海洋生态环境具有重要的价值与意义。针对溢油散射机制问题,通过分析基于波浪谱溢油后向散射系数计算研究,综合考虑水体特性、水分子张力、弹性模型及表面张力等因素的研究状况进行了分析,对针对微扰近似解方程,结合水体参数的阻尼作用的研究开展了综述,阐述溢油遥感监测阻尼在与波浪谱结合不紧密以及阻尼的定量计算不够等研究不足问题,并提出了今后溢油遥感监测阻尼的研究在针对海浪谱的阻尼特性、基于波浪谱后向散射系数计算的研究方向,为定量分析溢油的阻尼特性提供技术支撑,从而提高溢油遥感监测的精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘玉芳
邹亚荣
梁超
关键词 溢油阻尼机制遥感探测进展    
Abstract

Oil spill is one of the main sources of pollution to the marine environment. Early monitoring of oil spill is very important for marine environment protecting. In this paper, the calculation of radar backscattering based on the wave spectrum was carried out, and a review of the study of the damping ratio of wave spectrum in consideration of the films characteristics, water molecular tension, elastic model and surface tension was carried out. The problem of insufficient research on the damping of the oil spill remote sensing monitoring with the wave spectrum and the quantitative calculation of the damping was discussed. The research on the damping of the oil spill for remote sensing monitoring in the future may be based on the backscattering characteristics of the real ocean wave spectrum under the cover with oil slicks. The research on radar coefficient calculation can provide support for quantitative analysis of the damping characteristics of oil spills, thus improving the accuracy of oil spill remote sensing monitoring.

Key wordsoil spill    damping mechanism    remote sensing detection    progress
收稿日期: 2019-10-24      出版日期: 2020-10-09
:  TP79  
基金资助:国家重点研发计划子课题“机器学习支持的复杂典型要素多层次融合技术研究”(2018YFB0505001-04)
通讯作者: 邹亚荣
作者简介: 刘玉芳(1978-),女,硕士,中级工程师,主要研究方向为遥感图像处理和目标识别。Email: 13691093600@163.com
引用本文:   
刘玉芳, 邹亚荣, 梁超. 溢油阻尼散射机制遥感监测研究进展[J]. 国土资源遥感, 2020, 32(3): 1-7.
LIU Yufang, ZOU Yarong, LIANG Chao. Progress in remote sensing detection of oil spill damping mechanism. Remote Sensing for Land & Resources, 2020, 32(3): 1-7.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.03.01      或      https://www.gtzyyg.com/CN/Y2020/V32/I3/1
作者及年份 采用的近似模型 比较评价
Gill等,2002年[4] 建立了海面雷达散射截面计算模型 对低入射角下海面垂直极化散射计算有效
Hermansson等,2003年[5] SPM近似模型 SPM近似模型仅适用于粗糙度角较小的表面
Chen等,1988年[10]
Thorsos等,1989年[11]
Thorsos,1988年[12]
使用高斯随机粗糙表面谱及P-M谱研究了K-A模型与SPA模型的适用性 K-A模型与SPA模型只能计算单一粗糙度表面的电磁波散射
Khenchaf,2000年[13] 基于TSM模型开展散射计算 TSM模型尺度划分具有任意性
Voronovich,1985年[14]
Broschat,1993年[15]
Thorsos等,1995年[16]
Broschat等,1997年[17]
基于SSA模型开展散射计算 SSA模型可以在一种理论框架下适应长、中、小尺度波数区间海面粗糙度下的散射计算
Tab.1  随机粗糙表面的雷达电磁波散射主要研究
作者及年份 模型、方法与主要成果 比较评价
Alpers等,1988年[25]
Htihnerfuss,1986年[27]
选择适当的物理海洋学模型来描述油膜对海洋表面的调制效果,揭示油膜层的电磁阻尼特性 采用Marangoni理论解释了油膜对海面短重力-毛细波的阻尼作用
Lombardini等,1989年[28] 给出了油膜阻尼比的解析表达式 模型计算与实际测量结果具有较好的一致性
Gade等,1998年[39] 基于Marangoni理论将阻尼比定义为油膜覆盖海面与无油膜覆盖海面黏性阻尼系数的比值,给出了阻尼比近似表达式 计算了3种油膜(OLA,OLME和TOLG)的理论阻尼曲线
Wei等, 1992年[36]
Onstott等,1992年[37]
Cini等,1978年[38].
Gade等,1998年[40,41]
利用SIR-C/X-SAR任务期间的多次海上油膜实验及其他机载雷达散射计测量数据分析油膜阻尼与环境风速的关系。在阻尼计算中考虑了波动平衡方程各作用项的影响,将油膜的理论阻尼比写成油膜覆盖海面与无油膜海面雷达后向散射截面的比值的形式 Gade等基于阻尼比公式定性分析了多次海上油膜测量实验中实测的油膜阻尼比,提出了不同种类油膜在中(5 m/s)、低(3.5~4 m/s)、高(12 m/s)等不同风速条件下的阻尼变化情况的理论解释,并给出了高风速(大于10 m/s)海况下油膜阻尼比近似计算公式
Ermakov等,1986年[34] 对阻尼比公式进行了发展 Ermakov描述了弹性油膜对表面重力毛细波的作用,Gambardella在此基础上得出了微风及中等风速条件下海面油膜阻尼模型
Tab.2  海面油膜阻尼研究与散射模拟计算主要研究
作者及年代 模型方法 海面谱 成果比较
Franceschetti等,2002年[44] 分布式表面模型 P-M谱 给出了阻尼比率的公式表达,定量描述了油膜物理属性对海面波浪谱的阻尼作用
Nicolas等,2006年[46] PILE模型 统一海浪谱 模拟了海面雷达后向散射截面,并与几何光学近似模型进行对比分析
Nunziata等,2009年[47] 双尺度边界扰动模型 全区间海面谱 能很好地解释和预测表面生物膜散射对比度
Timchenko等, 2002年[45] SPM模型 扩展到整个海面波谱区间的模型 通过数值模拟了油膜覆盖海面雷达后向散射衰减
Ayari等,2010年[48] TSM模型 Elfouhaily统一海浪谱 计算了前向、后向及双基站配置下油膜覆盖海面雷达后向散射截面
Kim等,2016年[51] 微波散射模型和Monte-Carlo模拟 一维粗糙海面 将数值模拟结果与2007年河北Spirit油轮引起海面溢油SAR图像进行了比较
Zheng等,2016年[52] 小扰动模型和传统的双尺度模型 理论模型模拟海面 数值模拟结果与无人机载L波段全极化SAR影像进行比较,表明其理论模型可以用来估算25°~60°入射角下海面微波散射的极化特征
Kim等,2016年[51] Mont-Carlo方法和矩量法 Elfouhaily谱、Durden-Vesecky谱 对比2007年河北Spirit油轮溢油TerraSAR-X影像,对充分发展海面,Elfouhaily谱具有比Durden-Vesecky谱更好的一致性
杨永红等,2012年[53] TMA谱模型和Marangoni溢油理论模型 Lombardini(1989年)建立的溢油海面海浪谱 可用于浅海环境下海面溢油电磁散射计算及分析溢油对电磁散射的影响
Tab.3  海面溢油阻尼模拟计算主要研究
[1] 温艳萍, 吴传雯. 大连新港“连·16溢油事故”直接经济损失评估[J]. 中国渔业经济, 2013,31(4):91-96.
Wen Y P, Wu C W. Direct economic loss assessment of “Lian 16 oil spill accident” in Dalian new port[J]. China Fisheries Economy, 2013,31(4):91-96.
[2] 郭永峰, 纪少君, 唐长全. 从美国政府墨西哥湾事故调查委员会组成得到的启示[J].石油知识, 2011(4):58-59.
Guo Y F, Ji S J, Tang C Q. Enlightenment from the composition of the Gulf accident investigation committee of the US government[J].Petroleum knowledge 2011(4):58-59.
[3] 国家海洋局. 蓬莱19-3油田溢油事故联合调查组关于事故调查处理报告[R]. 2012.
State Oceanic Administration. Report on accident investigation and handling by joint investigation group of oil spill accident in Penglai 19-3 oilfield[R]. 2012.
[4] Gill E W, Walsh J. A perspective on two decades of fundamental and applied research in electromagnetic scattering and high frequency ground wave radar on the Canadian East Coast [C]//IEEE International Geoscience & Remote Sensing Symposium.IEEE, 2002.
[5] Hermansson P, Forssell G, FagerstrÄom J. A review of models for scattering from rough surfaces[R]. Swedish Defence Research Agency Sensor Technology, 2003.
[6] Rice O S. Reflection of electromagnetic waves from slightly rough surfaces[J]. Communications on Pure and Applied Mathematics, 2010,4(2-3):351-378.
[7] Beckmann P, Spizzichino A. The scattering of electromagnetic waves from rough surfaces[M]. Norwood,MA,Artech House,Inc., 1987: 511.
[8] Andre S. The scattering of electromagnetic waves from rough surfaces[M]. New York: Pergamon Press, 1963.
[9] Ishimaru A. Wave propagation and scattering in random media[M]. New York: Academic Press, 1978.
[10] Chen M F, Fung A K. A numerical study of the regions of validity of the Kirchhoff and small:Perturbation rough surface scattering models[J]. Radio Science, 1988,23(2):163-170.
[11] Thorsos E I, Jackson D R. The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum[J]. The Journal of the Acoustical Society of America, 1989,86(1):261-277.
[12] Thorsos E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[J]. The Journal of the Acoustical Society of America, 1988,83(1):78-92.
[13] Khenchaf A. Bistatic scattering and depolarization by randomly rough surfaces:Application to the natural rough surfaces in X-band[J]. Waves in Random and Complex Media, 2000,11(2):61-89.
[14] Voronovich A G. Small slope approximation in wave scattering by rough surfaces[J]. Sou Phys JETP, 1985,62:65-70.
[15] Broschat S L. The small slope approximation reflection coefficient for scattering from a "Pierson-Moskowitz" sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993,31(5):1112-1114.
[16] Thorsos E I, Broschat S L. An investigation of the small slope approximation for scattering from rough surfaces.Part I.Theory[J]. The Journal of the Acoustical Society of America, 1995,97(4):2082-2093.
[17] Broschat S L, Thorsos E I. An investigation of the small slope approximation for scattering from rough surfaces.Part II.Numerical studies[J]. The Journal of the Acoustical Society of America, 1997,101(5):2615-2625.
[18] Pierson W J, Moskowitz L. A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii[J]. Journal of geophysical research, 1964,69(24):5181-5190.
[19] Thorsos E I. Acoustic scattering from a “Pierson-Moskowitz”sea surface[J]. The Journal of the Acoustical Society of America, 1990,88(1):335-349.
[20] Donelan M A, Pierson W J P. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry[J]. J Geophys Res, 1987,92:4971-5029.
[21] Bjerkaas A W, Riedel F W. Proposed model for the elevation spectrum of a wind-roughened sea surface[J]. Appl Phys Lab, 1979: 31.
[22] Apel J R, An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter[J]. Journal of Geoohysical Geophys Research(Oceans), 1994,99(8):16289.
[23] Fung A K, Lee K K. A semi-empirical sea-spectrum model for scattering coefficient estimation[J]. IEEE J Oceanic Eng, 1982,7(4), 166-176.
[24] Elfouhaily T, Charpon B, Katsaros K: A unified directional spectrum for long and short wind-driven waves[J]. JGR, 1997,102:15781-15796.
[25] Alpers W, Htihnerfuss H. Radar signatures of oil films floating on the sea and the Marangoni effect[J]. J Geophys Res, 1988,93:3642-3648.
[26] Alpers W, Htihnerfuss H, The damping of ocean waves by surface films:A new look at an old problem[J]. J Geophys Res, 1989,94:6251-6265.
[27] Htihnerfuss H. The molecular structure of the system water/monomolecular surface film and its influence on water wave damping,Habilitationsschr.,Fachbereich 13(Chem.),Univ.Hamburg,Hamburg,Germany, 1986: 245.
[28] Lombardini P, Fiscella B, Trivero P,etc.Modulation of the spectra of short gravity waves by sea surface films:slick detection and characterization with a microwave probe[J]. Journal of Atmospheric and Oceanic Technology, 1989,6:882-90.
[29] Garrett W D, Damping of capillary waves at the air-sea interface by oceanic surface-active material[J]. J Mar Res, 1968,25:279-291.
[30] Htihnerfuss H, Alpers W, Cross A, et al. The modification of X and L band radar signals by monomolecular sea slicks[J]. J Geophys Res, 1983,88:9817-9822.
doi: 10.1029/JC088iC14p09817
[31] Htihnerfuss H, Alpers W, Garrett W D, et al. Attenuation of capillary and gravity waves at sea by monomolecular organic surface films[J]. J Geophys.Res, 1983,88:9809-9816.
[32] Htihnerfuss H, Gericke A, Alpers W, et al. Classification of sea slicks by multi-frequency radar techniques:New chemical insights and their geophysica implications[J]. J Geophys Res, 1994,99:9835-9845.
[33] Hilhnerfuss H, Alpers W, Dannhauer H, et al. Natural and man-made sea slicks in the North Sea investigated by a helicopter-borne 5-frequenc radar scatterometer[J]. lnt J Remote Sens, 1996,17:1567-1582.
[34] Ermakov S A, Zujkova E M, Panchenko A R, et al. Surface film effect on short wind waves[J]. Dyn Atmos Oceans, 1986,10:31-50.
[35] Wu J. Suppression of oceanic ripples by surfactant-spectral effects deduced from sun-glitter,wave-staff and microwave measurements[J]. J Phys Oceanogr, 1989,19:238-245.
[36] Wei Y, Wu J. In situ measurements of surface tension,wave damping,and wind properties modified by natural films[J]. J Geophys Res, 1992,97:5307-5313.
[37] Onstott R, Rufenach C. Shipboard active and passive microwave measurement of ocean surface slicks off the southern California coast[J]. J Geophys Res, 1992,97:5315-5323.
[38] Cini R, Lombardini P P. Damping effect of monolayers on surface wave motion in a liquid[J]. J Colloid Interface Sci, 1978,65:387-389.
doi: 10.1016/0021-9797(78)90170-4
[39] Gade M, Alpers W, Htihnerfuss H, et al. Wind wave tank measurements of wave damping and radar cross sections in the presence of monomolecular surface films[J]. J Geophys Res, 1998,103:3167-3178.
doi: 10.1029/97JC01578
[40] Gade M, Alpers W, Huhnerfuss H, et al. On the reduction of the radar backscatter by oceanic surface films:Scatterometer measurements and their theoretical interpretation[J]. Remote Sensing of Environment, 1998,70(66):52-70.
doi: 10.1016/S0034-4257(99)00057-7
[41] Gade M, Alpers W, Hühnerfuss H, et al. Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR[J]. Journal of Geophysical Research, 1998,103(C9):18851.
doi: 10.1029/97JC01915
[42] Hasselmann K. Grundgleichungen der Seegangsvorhersage,Schiffstechnol[J]. 1960,1:191-195.
[43] Gade M, Alpers W, Huhnerfuss H, et al. On the reduction of the radar backscatter by oceanic surface films:Scatterometer measurements and their theoretical interpretation[J]. Remote Sensing of Environment, 1998,70(66):52-70.
doi: 10.1016/S0034-4257(99)00057-7
[44] Franceschetti G, Fellow L, et al. SAR raw signal simulation of oil slicks in ocean environments[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002,40(9):1935-1949.
[45] Timchenko A I, Serebryannikov A E, Schuenemann K F. Model of electromagnetic wave scattering from sea surface with and without oil slicks[J]. Progress in Electromagnetics Research, 2002,37:319-343.
[46] Nicolas D, Beaucoudrey N D, Bourlier C, et al. Fast numerical method for electromagnetic scattering by rough layered interfaces:Propagation-inside-layer expansion method[J]. Journal of the Optical Society of America A, 2006,23(2):359-369.
[47] Nunziata F, Sobieski P, Migliaccio M. The two-scale BPM scattering model for sea biogenic slicks contrast[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(7):1949-1956.
[48] Ayari M, Coatanhay A, Khenchaf A. The influence of ripple damping on electromagnetic bistatic scattering by sea surface[J]. Geoscience and Remote Sensing Symposium, 2010,2:1345-1348.
[49] Minchew B, Jones C E, Holt B. Polarimetric analysis of backscatter from the deepwater horizon oil spill using L-band synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(10):3812-3830.
[50] Ermakov S A, Sergievskaya I A, Gushchin L A. Damping of gravity-capillary waves in the presence of oil slicks according to data from laboratory and numerical experiments[J]. Izvestiya Atmospheric & Oceanic Physics, 2012,48(5):565-572.
[51] Kim T H, Yang C S, Ouchi K. Accuracy improvement of the radar backscatter simulation from sea surface covered by oil slick using fetch-dependent waveheight spectrum:Comparison with the 2007 Heibei Spirit Case in the Yellow Sea[J]. Ocean Science Journal, 2016,51(2):235-249.
[52] Zheng H, Zhang Y, Wang Y, et al. Theoretical study on polarimetric features of microwave scattering from sea surface [C]//2016 Progress in Electromagnetic Research Symposium(PIERS),IEEE, 2016.
[53] 杨永红, 徐平, 林明. 浅海环境下溢油海面的仿真[J]. 海洋通报, 2012,31(6):636-639.
Yang Y H, Xu P, Lin M. Simulation of sea surface with oil slick in the shallow sea environment[J]. Marine Science Bulletin, 2012,31(6):636-639.
[54] Zou Y R, Shi L J, Zhang S L, et al. Oil spill detection by a support vector machine based on polarization decomposition characteristics[J]. Acta Oceanologica Sinica, 2016,35(9):86-90.
[55] Ivanov A Y, Filimonova N A, Kucheiko A Y, et al. Oil spills in the Barents Sea based on satellite monitoring using SAR:Spatial distribution and main sources[J]. International Journal of Remote Sensing, 2017: 1-15.
[56] Dutta S, Joseph M, Kumari E V S S, Automated approach for extraction of oil spill from SAR imagery[J].Journal of the Indian Society of Remote Sensing, 2018(5):1-7.
[1] 蒋校, 钟昶, 连铮, 吴亮廷, 邵治涛. 卫星遥感地质信息产品分类标准研究进展[J]. 自然资源遥感, 2021, 33(3): 279-283.
[2] 李万伦, 甘甫平. 矿山环境高光谱遥感监测研究进展[J]. 国土资源遥感, 2016, 28(2): 1-7.
[3] 梁树能, 甘甫平, 魏红艳, 肖晨超, 张振华, 魏丹丹. 哈密遥感地质资源评价综合应用野外试验场建设进展[J]. 国土资源遥感, 2015, 27(2): 8-14.
[4] 祝善友, 张莹, 张海龙, 曹云, 张桂欣. Landsat卫星图像用于大面积森林扰动监测的研究进展[J]. 国土资源遥感, 2014, 26(2): 5-10.
[5] 盖颖颖, 周斌, 孙元芳, 周燕. 基于HJ-CCD数据的海面溢油提取方法研究[J]. 国土资源遥感, 2014, 26(2): 99-104.
[6] 刘丙新, 李颖, 高超. 基于机载多光谱遥感数据的溢油信息提取方法[J]. 国土资源遥感, 2014, 26(1): 42-46.
[7] 叶娜, 贾建军, 田静, 苏红波, 雒伟民, 张峰, 肖康. 浒苔遥感监测方法的研究进展[J]. 国土资源遥感, 2013, 25(1): 7-12.
[8] 蒙继华, 吴炳方, 杜鑫, 张飞飞, 张淼, 董泰峰. 遥感在精准农业中的应用进展及展望[J]. 国土资源遥感, 2011, 23(3): 1-7.
[9] 申晋利, 丁树柏, 齐小平, 邢学文.
烃类微渗漏现象遥感检测研究进展
[J]. 国土资源遥感, 2010, 22(3): 7-11.
[10] 熊盛青. 月球探测与研究进展[J]. 国土资源遥感, 2009, 21(4): 1-7.
[11] 陈伟涛, 张志, 王焰新. 矿山开发及矿山环境遥感探测研究进展[J]. 国土资源遥感, 2009, 21(2): 1-8.
[12] 胡华浪, 陈云浩, 宫阿都. 城市热岛的遥感研究进展[J]. 国土资源遥感, 2005, 17(3): 5-9.
[13] 张建民, 管海晏, A.Rose ma. 煤田火区遥感四层空间探测方法[J]. 国土资源遥感, 2004, 16(4): 50-53,62.
[14] 钱乐祥, 泮学芹, 赵芊. 中国高光谱成像遥感应用研究进展[J]. 国土资源遥感, 2004, 16(2): 1-6.
[15] 施益强, 陈崇成, 陈玲. 遥感技术在环境资源中的应用进展与展望[J]. 国土资源遥感, 2002, 14(4): 7-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发