Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (4): 97-104    DOI: 10.6046/gtzyyg.2020.04.14
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于多源遥感数据的CNN水稻提取研究
蔡耀通1,2,3,4(), 刘书彤4, 林辉1,2,3,4, 张猛1,2,3,4()
1.中南林业科技大学林业遥感信息工程研究中心,长沙 410004
2.林业遥感大数据与生态安全湖南省重点实验室,长沙 410004
3.南方森林资源经营与监测国家林业局重点实验室,长沙 410004
4.中南林业科技大学林学院,长沙 410004
Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data
CAI Yaotong1,2,3,4(), LIU Shutong4, LIN Hui1,2,3,4, ZHANG Meng1,2,3,4()
1. Research Center of Forestry Remote Sensing and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
2. Key Laboratory of Forestry Remote Sensing Based Big Data and Ecological Security for Hunan Province, Changsha 410004, China
3. Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China
4. College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
全文: PDF(5928 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

水稻是中国种植面积最广泛的粮食作物之一,适时、准确的水稻识别与监测对于国家粮食安全和农用地空间格局演变具有重要意义。基于水稻物候关键期的多时相Sentinel-2A光谱数据、植被指数、植被丰度以及基于Landsat8反演得到的地表温度(land surface temperature,LST),采用卷积神经网络(convolutional neural network,CNN)、支持向量机(support vector machine,SVM)和随机森林(random forest,RF)算法对高异质化的长株潭核心区的水稻进行了提取,并得到了对应的水稻填图。研究结果显示,利用多时相多源遥感数据通过CNN算法能够有效提取高异质化程度区域的水稻信息,水稻分类总体精度(overall accuracy,OA)和Kappa系数分别达到了92%与0.90以上。该文提出的基于CNN的水稻信息识别方法,能够为改善与提高异质化程度较高区域水稻信息提取的精度提供行之有效的技术与途径。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡耀通
刘书彤
林辉
张猛
关键词 水稻Sentinel-2ALandsat8CNN长株潭地区    
Abstract

Rice is one of the most widely planted food crops in China. Therefore, timely and accurate rice identification and monitoring is of great significance to the national food security and the evolution of agricultural land spatial pattern. In this study, multi-temporal Sentinel-2A multispectral images, vegetation indices, vegetation abundance and Landsat 8 derived LST on the critical period of rice phenology were used. The CNN, SVM and RF classifiers were applied to extracting the paddy rice and finally the paddy rice map was obtained. The result shows that using multi-temporal and multi-source remote sensing data with the CNN algorithm can effectively extract rice information in high heterogeneity region. The overall accuracy of rice classification and Kappa coefficient are over 92% and 0.90 respectively. This study has demonstrated the potential of using moderate spatial resolution images combined with CNN to map the paddy rice in highly heterogeneous area.

Key wordspaddy rice    Sentinel-2A    Landsat8    convolutional neural network(CNN)    Changsha-Zhuzhou-Xiangtan Area
收稿日期: 2019-11-29      出版日期: 2020-12-23
:  TP79  
基金资助:国家自然科学基金项目“洞庭湖湿地NPP反演模型优化及其时空变化驱动机制研究”(41901385)
通讯作者: 张猛
作者简介: 蔡耀通(1995-),男,硕士研究生,研究方向为资源环境遥感与地理信息系统。Email:yaotongcai@csuft.edu.cn
引用本文:   
蔡耀通, 刘书彤, 林辉, 张猛. 基于多源遥感数据的CNN水稻提取研究[J]. 国土资源遥感, 2020, 32(4): 97-104.
CAI Yaotong, LIU Shutong, LIN Hui, ZHANG Meng. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data. Remote Sensing for Land & Resources, 2020, 32(4): 97-104.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.04.14      或      https://www.gtzyyg.com/CN/Y2020/V32/I4/97
Fig.1  研究区范围
月份 双季稻(早稻) 双季稻(晚稻) 单季稻
3月 播种与移栽
4月 播种与移栽
5月 开花期
6月
7月 成熟期 移栽 开花期
8月
9月 开花期 成熟期
10月 成熟期
Tab.1  水稻物候期
遥感数据类型 时间 行列号 产品
等级
云量/%
Sentinel-2A 2017-04-08 N0205_R075 L1C 0.029
2017-07-12 N0205_R075 L1C 0.461
2017-09-15 N0205_R075 L1C 0.198
2017-10-30 N0205_R075 L1C 0.352
Landsat8 2017-04-05 123/40 123/41 L1T 0.61
2017-07-10 123/40 123/41 L1T 1.87
2017-09-12 123/40 123/41 L1T 3.05
2017-10-30 123/40 123/41 L1T 1.07
Tab.2  遥感数据集参数
Fig.2  技术流程图
地物类型 水稻 蔬菜基地 其他作物 林地 建筑物 水域
样本数量 442 234 223 166 177 156
Tab.3  双季稻提取的训练样本信息
Fig.3  基于3种分类器的水稻提取结果
分类方法 类型 PA/% UA/% OA/% Kappa系数
CNN 水稻 90.24 91.32 92.11 0.90
蔬菜基地 86.77 85.91
其他作物 87.66 86.74
其他 94.62 95.17
SVM 水稻 79.98 81.46 82.47 0.76
蔬菜基地 81.37 80.28
其他作物 80.62 80.06
其他 87.25 86.27
RF 水稻 82.67 82.05 83.77 0.80
蔬菜基地 83.24 84.67
其他作物 78.69. 80.17
其他 89.92 88.69
Tab.4  基于CNN,SVM与RF的分类精度
Fig.4-1  不同分类器3个典型稻作区域分类结果
Fig.4-2  不同分类器3个典型稻作区域分类结果
[1] 罗观长. 南方稻作、地块特征与农户种植模式——基于南方五省稻农调查数据实证分析[D]. 广州:华南农业大学, 2016.
Luo G C. Rice in south China,land characteristics,farmers planting patterns:Empirical analysis based on survey data of five southern provinces rice farmers[D]. Guangzhou:South China Agricultural University, 2016.
[2] Dong J, Xiao X. Evolution of regional to global paddy rice mapping methods:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,119(1):214-227.
[3] Bachelet D. Rice paddy inventory in a few provinces of China using AVHRR data[J]. Geocarto International, 1995,10(1):23-38.
[4] Xiao X, Boles S, Frolking S, et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2006,100(1):95-113.
[5] Cai Y T, Zhang M, Lin H. Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data[J]. Advance in Space Research, 2019,64(11):2233-2244.
[6] Thenkabail P S. Mapping rice areas of south Asia using MODIS multitemporal data[J]. Journal of Applied Remote Sensing, 2011,5(4):863-871.
[7] Dong J, Xiao X, Kou W, et al. Tracking the dynamics of paddy rice planting area in 1986—2010 through time series Landsat images and phenology-based algorithms[J]. Remote Sensing of Environment, 2015,160(160):99-113.
[8] 张猛, 曾永年. 基于多时相Landsat数据融合的洞庭湖区水稻面积提取[J]. 农业工程学报, 2015,31(13):178-185.
Zhang M, Zeng Y N. Mapping paddy fields of Dongting Lake area by fusing Landsat and MODIS data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(13):178-185.
[9] 杨斌, 李丹, 高桂胜, 等. Sentinel-2A卫星数据处理分析及再干旱河谷提取中的应用[J]. 国土资源遥感, 2018,30(3):128-135.doi: 10.6046/gtzyyg.2018.03.18.
Yang B, Li D, Gao G S, et al. Processing analysis of Sentinel-2A data and application to arid valleys extraction[J]. Remote Sensing for Land and Resources, 2018,30(3):128-135.doi: 10.6046/gtzyyg.2018.03.18.
[10] Lambert M, Traore P, Blaes X, et al. Estimating smallholder crops production at village level from Sentinel-2 time series in Mali’s cotton belt[J]. Remote Sensing of Environment, 2018,216(1):647-657.
[11] Toshihiro S, Masayuki Y, Hitoshi T, et al. A crop phenology detection method using time-series MODIS data[J]. Remote Sensing of Environment, 2005,96(3):366-374.
[12] Wardlow B D, Egbert S L. Large-area crop mapping using time-series MODIS 250 m NDVI data:An assessment for the U.S. Central Great Plains[J]. Remote Sensing of Environment, 2008,112(3):1096-1116.
[13] 国贤玉, 李坤, 王志勇, 等. 基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类[J]. 国土资源遥感, 2018,30(4):20-27.doi: 10.6046/gtzyyg.2018.04.04.
Guo X Y, Li K, Wang Z Y, et al. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM+SFS strategy[J]. Remote Sensing for Land and Resources, 2018,30(4):20-27.doi: 10.6046/gtzyyg.2018.04.04.
[14] Qin Y, Xiao X, Dong J, et al. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat8 (OLI),Landsat7 (ETM+) and MODIS imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,105:220-233.
doi: 10.1016/j.isprsjprs.2015.04.008 pmid: 27695195
[15] Erinjery J, Singh M, Kent R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite[J]. Remote Sensing of Environment, 2018,216(1):345-354.
[16] Romero A, Gatta C, Camps-vall G. Unsupervised deep feature extraction for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(3):1349-1362.
[17] Maggiori E, Tarabalka Y, Charpiat G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,55(2):645-657.
doi: 10.1109/TGRS.2016.2612821
[18] Pan X, Zhao J. High-resolution remote sensing image classification method based on convolutional neural network and restricted conditional random field[J]. Remote Sensing, 2018,920(10):1-20.
[19] 蔡耀通, 林辉, 孙华, 等. 基于TanDEM-X数据的林分平均高反演方法研究[J]. 西南林业大学学报(自然科学), 2019,39(5):110-117.
Cai Y T, Lin H, Sun H, et al. Stand allocation high inversion method based on TanDEM-X data[J]. Journal of Southwest Forestry University (Natural Sciences), 2019,39(5):110-117.
[20] 赵莲, 张锦水, 胡潭高, 等. 变端元混合像元分解冬小麦种植面积测量方法[J]. 国土资源遥感, 2011,23(1):66-72.doi: 10.6046/gtzyyg.2011.01.13.
Zhao L, Zhang J S, Hu T G, et al. The application of the dynamic endmember linear spectral unmixing model to winter wheat area estimation[J]. Remote Sensing for Land and Resources, 2011,23(1):66-72.doi: 10.6046/gtzyyg.2011.01.13.
[21] Zhang M, Lin H, Wang G, et al. Mapping paddy rice using a convolutional neural network (CNN) with Landsat8 datasets in the Dongting Lake area,China[J]. Remote Sensing, 2018,10(11), 1840.
[22] 徐涵秋. 新型Landsat8卫星影像的反射率和地表温度反演[J]. 地球物理学报, 2015,58(3):741-747.
Xu H Q. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat8 satellite[J]. Chinese Journal of Geophysics, 2015,58(3):741-747.
[23] Azizpour H, Razavian A S, Sullivan J, et al. Factors of transferability for a generic ConvNet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,38(9):1790-1802.
doi: 10.1109/TPAMI.2015.2500224 pmid: 26584488
[24] Kontgis C, Schneider A, Ozdogan M. Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data[J]. Remote Sensing of Environment, 2015,169:255-269.
doi: 10.1016/j.rse.2015.08.004
[1] 赵怡, 许剑辉, 钟凯文, 王云鹏, 胡泓达, 吴萍昊. 基于Sentinel-2A和Landsat8的城市不透水面的提取[J]. 国土资源遥感, 2021, 33(2): 40-47.
[2] 安健健, 孟庆岩, 胡蝶, 胡新礼, 杨健, 杨天梁. 基于Faster R-CNN的火电厂冷却塔检测及工作状态判定[J]. 国土资源遥感, 2021, 33(2): 93-99.
[3] 仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.
[4] 董天成, 杨肖, 李卉, 张志, 齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取[J]. 国土资源遥感, 2021, 33(1): 129-137.
[5] 王琳, 谢洪波, 文广超, 杨运航. 基于Landsat8的含蓝藻湖泊水体信息提取方法研究[J]. 国土资源遥感, 2020, 32(4): 130-136.
[6] 王德军, 姜琦刚, 李远华, 关海涛, 赵鹏飞, 习靖. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4): 236-243.
[7] 陈朋弟, 黄亮, 夏炎, 余晓娜, 高霞霞. 基于Mask R-CNN的无人机影像路面交通标志检测与识别[J]. 国土资源遥感, 2020, 32(4): 61-67.
[8] 邓刚, 唐志光, 李朝奎, 陈浩, 彭焕华, 王晓茹. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2): 177-185.
[9] 石海岗, 梁春利, 张建永, 张春雷, 程旭. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2): 196-203.
[10] 刘智丽, 张启斌, 岳德鹏, 郝玉光, 苏凯. 基于Sentinel-2A与NPP-VIIRS夜间灯光数据的城市建成区提取[J]. 国土资源遥感, 2019, 31(4): 227-234.
[11] 刘畅, 杨康, 程亮, 李满春, 郭紫燕. Landsat8不透水面遥感信息提取方法对比[J]. 国土资源遥感, 2019, 31(3): 148-156.
[12] 王大钊, 王思梦, 黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J]. 国土资源遥感, 2019, 31(3): 157-165.
[13] 熊俊楠, 李伟, 程维明, 范春捆, 李进, 赵云亮. 高原地区LST空间分异特征及影响因素研究——以桑珠孜区为例[J]. 国土资源遥感, 2019, 31(2): 164-171.
[14] 谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2): 38-43.
[15] 刘文雅, 邓孺孺, 梁业恒, 吴仪, 刘永明. 基于辐射传输模型的巢湖叶绿素a浓度反演[J]. 国土资源遥感, 2019, 31(2): 102-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发