Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (4): 111-119    DOI: 10.6046/gtzyyg.2020.04.16
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于无人机影像的小麦植株密度估算方法研究
王伟1,2(), 王新盛1,2, 姚婵1,2, 金添1,2, 邬佳昱1,2, 苏伟1,2()
1.中国农业大学土地科学与技术学院,北京 100083
2.农业农村部农业灾害遥感重点实验室,北京 100083
Estimation of wheat planting density using UAV image
WANG Wei1,2(), WANG Xinsheng1,2, YAO Chan1,2, JIN Tian1,2, WU Jiayu1,2, SU Wei1,2()
1. College of Land Science and Technology, China Agricultural University, Beijing 100083, China
2. Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture, Beijing 100083, China
全文: PDF(4230 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

小麦是密植型作物,每亩地的播种量近20 kg,冬小麦植株密度的高低会直接影响最终产量,因此,实时监测小麦植株密度是保证小麦产量的重要途径。目前,获取小麦植株密度的主要方式是以人工测量为主,费时、费力。本文利用大疆悟2无人机(unmanned aerial vehicle,UAV)搭载禅思X4S相机,分架次获取小麦种植区的高分辨率可见光影像,基于无人机影像提取小麦覆盖度,并建立小麦覆盖度与植株密度之间的关系,从而实现基于UAV影像的小麦植株密度的快速获取。实验表明: ①利用改进的HSI颜色模型提取小麦覆盖度比传统目视估测、人工计数等分类方法提高了提取精度及效率,克服了不同架次无人机影像的光照条件差异以及阴影的影响; ②苗期、越冬期和返青期小麦覆盖度与植株密度之间都具有较高的相关性,其中,基于无人机影像提取的覆盖度与小麦植株密度的相关系数R2在3个生育期分别为0.737 9,0.898 1和0.897 6。利用牛腾雨村样本对关系模型的验证结果显示,基于所建立的关系模型的反演结果与实测值之间也具有较好的相关性,R2达到了0.919 8。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王伟
王新盛
姚婵
金添
邬佳昱
苏伟
关键词 小麦无人机影像覆盖度植株密度HSI颜色模型Hough变换    
Abstract

Wheat is a densely planted crop, and the planting volume per acre is nearly 20 kg. The plant density of winter wheat will directly affect the final yield. Therefore, real-time monitoring of wheat plant density is an important way to ensure wheat yield. At present, the main method for obtaining the plant density of wheat is mainly manual measurement, which is time-consuming and laborious. In this paper, the DJ inspire 2 UAV is equipped with a Zens X4S camera to obtain high-resolution visible light images of wheat planting areas, extract wheat coverage based on UAV images, and establish the relationship between plant density and plant density so as to achieve rapid acquisition of wheat plant density based on UAV image. Experiments show the following results: ① Using the improved HSI color model to extract wheat coverage improves accuracy and extraction efficiency compared with traditional visual estimation, manual counting and other classification methods, and overcomes differences in lighting conditions and shadows of different sorts of UAV images influences. ② There is a high correlation between wheat coverage and plant density at the seedling stage, overwintering stage and turning green stage. Among them, the correlation coefficient R2 between the coverage based on drone image and the plant density of wheat are 0.737 9, 0.898 1 and 0.897 6 in three growth stages. The verification results of the relationship model using Niutengyu Village samples show that the inversion results based on the established relationship model also have a good correlation with the measured values, and R2 reaches 0.919 8.

Key wordswheat    UAV image    vegetation cover    planting density    HSI color model    Hough transform
收稿日期: 2019-11-18      出版日期: 2020-12-23
:  TP79  
基金资助:国家自然科学基金项目“联合时序遥感影像和地基激光雷达的玉米生长过程监测方法研究”(41671433);国家重点研发计划项目“粮食丰产增效科技创新”(2017YFD0300903)
通讯作者: 苏伟
作者简介: 王 伟(1987-),男,硕士研究生,主要从事农业遥感应用研究。Email:wangwei007@cau.edu.cn
引用本文:   
王伟, 王新盛, 姚婵, 金添, 邬佳昱, 苏伟. 基于无人机影像的小麦植株密度估算方法研究[J]. 国土资源遥感, 2020, 32(4): 111-119.
WANG Wei, WANG Xinsheng, YAO Chan, JIN Tian, WU Jiayu, SU Wei. Estimation of wheat planting density using UAV image. Remote Sensing for Land & Resources, 2020, 32(4): 111-119.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.04.16      或      https://www.gtzyyg.com/CN/Y2020/V32/I4/111
Fig.1  研究区及无人机影像(局部)
获取时间 生育期 高度/m 速度/(m·s-1) 拍照间隔/s 影像分辨率/cm 飞行架次/架次 采样点数/个
2017年11月1日 苗期 50 5 1.5 1 4 17(大韩村)
2017年12月13日 越冬期 20 3 1 0.5 16 30(大韩村),7(牛腾雨村)
2018年3月31日 返青期 20 3 1 0.5 12 17(大韩村)
Tab.1  无人机影像获取时间及飞行参数
Fig.2  地面样方实测
Fig.3  基于无人机影像的小麦植株密度估算及缺苗率建议流程
Fig.4  基于无人机影像结合地面实测数据的小麦植株密度估算过程
Fig.5  小麦覆盖度与地面实测苗数的相关关系
Fig.6  基于平均垄间距和基于无人机影像估算缺苗的小麦覆盖度与植株密度的相关关系
Fig.7  小麦植株密度提取精度验证结果
Fig.8  缺苗率的计算结果(局部)
[1] 周景博, 刘亮. 未来气候变化对中国小麦产量影响的差异性研究——基于Meta回归分析的定量综述[J]. 中国农业气象, 2018,39(3):141-151.
Zhou J B, Liu L. Study on the differences of the impact of future climate change on wheat yield in China quantitative review based on Meta regression analysis[J]. Chinese Journal of Agrometeorology, 2018,39(3):141-151.
[2] 石亚萍, 蔡静平. 种子发芽率快速测定方法的研究进展[J]. 粮油加工, 2008,23(5):89-91.
Shi Y P, Cai J P. Advances in the rapid determination of seed germination rate[J]. Grain and Oil Processing, 2008,23(5):89-91.
[3] 黄冬福. 种植密度影响水稻农艺性状的研究进展[J]. 安徽农学通报, 2012,18(1):70-71.
Huang D F. Research progress of planting density affecting rice agronomic traits[J]. Auhui Agricultural Science Bulletin, 2012,18(1):70-71.
[4] Jin X, Li Z, Yang G, et al. Winter wheat yield estimation based on multi-source medium resolution optical and Radar imaging data and the Aqua Crop model using the particle swarm optimization algorithm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,126:24-37.
[5] 赵舒怡, 宫兆宁, 刘旭颖. 2001—2013年华北地区植被覆盖度与干旱条件的相关分析[J]. 地理学报, 2015(5):31-43.
Zhao S Y, Gong Z N, Liu X Y. Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001—2013[J]. Acta Geographica Sinica, 2015(5):31-43.
[6] 邢著荣, 冯幼贵, 杨贵军, 等. 基于遥感的植被覆盖度估算方法述评[J]. 遥感技术与应用, 2009,24(6):849-854.
Xing Z R, Feng Y G, Yang G J, et al. Method of estimating vegetation coverage based on remote sensing[J]. Remote Sensing Technology and Application, 2009,24(6):849-854.
[7] Yang G J, Liu J G, Zhao C J, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping:Current status and perspectives[J]. Frontiers in Plant Science, 2017,8:1111.
doi: 10.3389/fpls.2017.01111 pmid: 28713402
[8] 孙刚, 黄文江, 陈鹏飞, 等. 轻小型无人机多光谱遥感技术应用进展[J]. 农业机械学报, 2018,49(3):1-17.
Sun G, Huang W J, Chen P F, et al. Advances in UAV-based multispectral remote sensing applications[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(3):1-17.
[9] 刘建刚, 赵春江, 杨贵军, 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016,32(24):98-106.
Liu J G, Zhao C J, Yang G J, et al. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(24):98-106.
[10] 王柯, 付怡然, 彭向阳, 等. 无人机低空遥感技术进展及典型行业应用综述[J]. 测绘通报, 2017(s1):79-83.
Wang K, Fu Y R, Peng X Y, et al. Overview of UAV low altitude remote sensing technology and application in typical industries[J]. Bulletin of Surveying and Mapping, 2017(s1):79-83.
[11] Primicerio J, Gennaro S F D, Fiorillo E, et al. A flexible unmanned aerial vehicle for precision agriculture[J]. Precision Agriculture, 2012,13(4):517-523.
[12] Sugiura R, Tsuda S, Tamiya S, et al. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle[J]. Biosystems Engineering, 2016,148:1-10.
[13] 刘峰, 刘素红, 向阳. 园地植被覆盖度的无人机遥感监测研究[J]. 农业机械学报, 2014,45(11):250-257.
Liu F, Liu S H, Xiang Y. Study on monitoring fractional vegetation cover of garden plots by unmanned aerial vehicles[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(11):250-257.
[14] 冯海英, 冯仲科, 冯海霞. 一种基于无人机高光谱数据的植被盖度估算新方法[J]. 光谱学与光谱分析, 2017,37(11):3573-3578.
Feng H Y, Feng Z K, Feng H X. A new method for estimating the fractional vegetation cover based on UVA hyperspectrum[J]. Spectroscopy and Spectral Analysis, 2017,37(11):3573-3578.
[15] 周在明, 杨燕明, 陈本清. 基于无人机遥感监测滩涂湿地入侵种互花米草植被覆盖度[J]. 应用生态学报, 2016,27(12):3920-3926.
pmid: 29704351
Zhou Z M, Yang Y M, Chen B Q. Fractional vegetation cover of invasive spartina alterniflora in coastal wetland using unmanned aerial vehicle (UAV) remote sensing[J]. Journal of Applied Ecology, 2016,27(12):3920-3926.
doi: 10.13287/j.1001-9332.201612.006 pmid: 29704351
[16] 郭震冬, 顾正东, 许盛, 等. 利用无人机技术进行社区植被覆盖率调查[J]. 北京测绘, 2017(5):88-91.
Guo Z D, Gu Z D, Xu S, et al. UAV-based investigation of community vegetation coverage[J]. Beijing Surveying and Mapping, 2017(5):88-91.
[17] Chen J, Yi S, Yu Q, et al. Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai-Tibetan Plateau[J]. International Journal of Remote Sensing, 2016,37(8):1922-1936.
[18] 葛静, 孟宝平, 杨淑霞, 等. 基于UAV技术和MODIS遥感数据的高寒草地盖度动态变化监测研究——以黄河源东部地区为例[J]. 草业学报, 2017,26(3):1-12.
Ge J, Meng B P, Yang S X, et al. Dynamic monitoring of alpine grassland coverage based on UAV technology and MODIS remote sensing data:A case study in the headwaters of the Yellow River[J]. Acta Prataculturae Sinica, 2017,26(3):1-12.
[19] 李冰, 刘镕源, 刘素红, 等. 基于低空无人机遥感的冬小麦覆盖度变化监测[J]. 农业工程学报, 2012,28(13):160-165.
Li B, Liu R Y, Liu S H, et al. Monitoring vegetation coverage variation of winter wheat by low-altitude UAV remote sensing system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(13):160-165.
[20] 牛亚晓, 张立元, 韩文霆, 等. 基于无人机遥感与植被指数的冬小麦覆盖度提取方法[J]. 农业机械学报, 2018,49(4):212-221.
Niu Y X, Zhang L Y, Han W T, et al. Fractional vegetation cover extraction method of winter wheat based on UAV remote sensing and vegetation index[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(4):212-221.
[21] 宋瑞霞, 孙相东, 王小春. 基于HSI颜色空间和暗原色先验的去雾算法[J]. 系统科学与数学, 2017,37(10):2111-2120.
Song R X, Sun X D, Wang X C. Haze removal algorithm based on HSI color space and dark channel prior[J]. Journal of Systems Science and Mathematical Sciences, 2017,37(10):2111-2120.
[22] 茅正冲, 孙雅慧. 基于HSI空间的玉米雄穗识别算法[J]. 传感器与微系统, 2018,37(9):117-119.
Mao Z C, Sun Y H. Algorithm of male tassel recognition based on HSI space[J]. Transducer and Microsystem Technologies, 2018,37(9):117-119.
[23] Montalvo M, Pajares G, Guerrero J M, et al. Automatic detection of crop rows in maize fields with high weeds pressure[J]. Expert Systems with Applications, 2012,39(15):11889-11897.
[24] Slaughter D C, Giles D K, Downey D. Autonomous robotic weed control systems:A review[J]. Computers and Electronics in Agriculture, 2008,61(1):63-78.
[25] Liu T, Li R, Jin X L, et al. Evaluation of seed emergence uniformity of mechanically sown wheat with UAV RGB imagery[J]. Remote Sensing, 2017,9(12):1-15.
[1] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4): 258-264.
[2] 陈虹, 郭兆成, 贺鹏. 1988—2018年间洱海流域植被覆盖度时空变换特征探究[J]. 国土资源遥感, 2021, 33(2): 116-123.
[3] 夏炎, 黄亮, 陈朋弟. 模糊超像素分割算法的无人机影像烟株精细提取[J]. 国土资源遥感, 2021, 33(1): 115-122.
[4] 田雷, 傅文学, 孙燕武, 荆林海, 邱玉宝, 李新武. 基于TM影像的西伯利亚北方森林覆盖度近30 a空间变化研究[J]. 国土资源遥感, 2021, 33(1): 214-220.
[5] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[6] 陈朋弟, 黄亮, 夏炎, 余晓娜, 高霞霞. 基于Mask R-CNN的无人机影像路面交通标志检测与识别[J]. 国土资源遥感, 2020, 32(4): 61-67.
[7] 连会青, 孟璐, 韩瑞刚, 杨艺, 余标. 基于无人机遥感的地质信息提取——以柳江盆地为例[J]. 国土资源遥感, 2020, 32(3): 136-142.
[8] 杨欢, 邓帆, 张佳华, 王雪婷, 马庆晓, 许诺. 基于MODIS EVI的江汉平原油菜和冬小麦种植信息提取研究[J]. 国土资源遥感, 2020, 32(3): 208-215.
[9] 王碧晴, 韩文泉, 许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[10] 薛武, 赵玲, 于英. 无人机影像稳健区域网平差[J]. 国土资源遥感, 2020, 32(2): 40-45.
[11] 袁辉, 秦其明, 孙元亨. 河南漯河郾城区冬小麦LAI反演结果真实性检验[J]. 国土资源遥感, 2020, 32(1): 162-168.
[12] 程宇琪, 王雨晴, 孙静萍, 张成福. 多伦县草原植被覆盖与蒸散量时空变化及其关系[J]. 国土资源遥感, 2020, 32(1): 200-208.
[13] 娄佩卿, 陈晓雨, 王疏桐, 付波霖, 黄永怡, 唐廷元, 凌铭. 基于无人机影像的喀斯特农耕区地物识别——以桂林市为例[J]. 国土资源遥感, 2020, 32(1): 216-223.
[14] 彭继达, 张春桂. 基于高分一号遥感影像的植被覆盖遥感监测——以厦门市为例[J]. 国土资源遥感, 2019, 31(4): 137-142.
[15] 赖家明, 杨武年. 基于RS的川西天然林区近29年植被覆盖动态变化[J]. 国土资源遥感, 2018, 30(4): 132-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发