Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (4): 209-218    DOI: 10.6046/gtzyyg.2020.04.26
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于天宫二号及Landsat8城镇生态环境现状评价
木哈代思·艾日肯1,2(), 张飞1,2,3(), 刘康4, 阿依努尔·玉山江1,2
1.新疆大学资源与环境科学学院智慧城市与环境建模普通高校重点实验室,乌鲁木齐 830046
2.新疆大学绿洲生态教育部重点实验室,乌鲁木齐 830046
3.中亚地理信息开发利用国家测绘地理信息局工程技术研究中心,乌鲁木齐 830002
4.中国科学院空间应用工程与技术中心,中国科学院太空应用重点实验室,北京 100094
Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data
MUHADAISI Ariken1,2(), ZHANG Fei1,2,3(), LIU Kang4, AYINUER Yushanjiang1,2
1. Key Laboratory of Wisdom City and Environment Modeling of Higher Education Institute, College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, China
2. Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
3. Engineering Research Center of Central Asia Geoinformation Development and Utilization, National Administration of Surveying, Mapping and Geoinformation, Urumqi 830002, China
4. Technology and Engineering Center for Space Utilization, Key Laboratory of Space Utilization, Chinese Academy of Sciences, Beijing 100094, China
全文: PDF(4680 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

城镇化进程引发一系列环境问题,对区域可持续发展有一定制约作用,利用多源遥感技术能以快速、准确、客观定量的优势揭示区域生态环境质量的现状,对监测区域生态环境质量有非常重要的意义。基于天宫二号宽波段成像仪及Landsat8 OLI-TIR数据,采用主成分分析法,构建遥感生态指数(remote sensing based ecological index,RSEI)用于监测与评价我国西北干旱绿洲城镇生态环境现状,并探讨天宫二号宽波段成像仪数据在生态环境监测中的应用。结果表明: 在当地生态环境起正向作用的指标是湿度(WET)、绿度(normalized difference vegetation index,NDVI),负向作用的是干度(normalized difference built-up index,NDBI)及热度(land surfce temperatune,LST),其中绿度(NDVI)对生态环境影响较大。2018年博湖县RSEI差等级[0,0.2)主要分布在城镇用地及北部未利用地; 较差等级[0.2,0.4)主要分布在山体及沙地,受到平均气温较高,蒸发量较大,日照时较长等自然因素影响; 湿地、耕地生态环境在良[0.6,0.8)和优等级[0.8,1.0]之间,说明该区域生态环境质量较好。根据生态环境质量空间分异特征,2018年研究区生态环境质量具有一定的内在联系,趋于集群的现象。该研究可为当地生态环境保护提供一定的科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
木哈代思·艾日肯
张飞
刘康
阿依努尔·玉山江
关键词 天宫二号宽波段成像仪主成分分析RSEI城镇化    
Abstract

At present, China has entered into the rapid development stage of urbanization, and urbanization is exerting its positive effect. Such a situation inevitably brings negative effects, but remote sensing technique can quickly, accurately, objectively and quantitatively reveal the present situation of the regional ecological environment quality. Bohu County is one of the most typical areas in arid oasis in Northwest China. Based on Tiangong-2 wide-band images spectrometer and Landsat8 images, the authors constructed a multi-factor comprehensive index RSEI evaluation model in combination with principal components, which was established to evaluate the ecological environment of Bohu County. Additionally, the authors explored the application of Tiangong-2 wide-band images to ecological environment monitoring. The result shows that the greenness (NDVI) and wetness (WET) have positive effects on promoting the ecological environment quality, while the heat (LST) and dryness (NDBI) have restraining effects on ecological environment quality. Greenness (NDVI) has a greater impact on the ecological environment than the other three indicators. In 2018, the RSEI poor grade (0 ~ 0.2) in Bohu County was mainly distributed over urban land and unused land in the north;the fair grade (0.2 ~ 0.4) was mainly distributed among mountains and sandy land. Quantitative and qualitative analysis shows that the driving factors included urban economic development, higher average temperature, greater evaporation, longer sunshine and other natural factors. The ecological environment of wetland and cultivated land was between good (0.6 ~ 0.8) and excellent (0.8 ~ 1.0), indicating that the ecological environment quality of this region was good. According to the spatial differentiation characteristics of ecological and environmental quality, the ecological and environmental quality of the research area in 2018 had a strong positive correlation and certain internal relations, and tended to cluster. This study offers important results and information for planning of regional ecological environment protection and development.

Key wordsTiangong-2 WIS    principal component analysis    RSEI    urbanization
收稿日期: 2020-01-02      出版日期: 2020-12-23
:  TP79  
基金资助:中国科学院战略性先导科技专项项目“泛第三极环境变化与绿色丝绸之路建设”(XDA20040400)
通讯作者: 张飞
作者简介: 木哈代思·艾日肯(1995-),女,硕士研究生,主要从事干旱区资源环境遥感研究。Email:18240988292@163.com
引用本文:   
木哈代思·艾日肯, 张飞, 刘康, 阿依努尔·玉山江. 基于天宫二号及Landsat8城镇生态环境现状评价[J]. 国土资源遥感, 2020, 32(4): 209-218.
MUHADAISI Ariken, ZHANG Fei, LIU Kang, AYINUER Yushanjiang. Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data. Remote Sensing for Land & Resources, 2020, 32(4): 209-218.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.04.26      或      https://www.gtzyyg.com/CN/Y2020/V32/I4/209
Fig.1  研究区示意图
波段 可见近红外谱段 短波红
外谱段
热红外
谱段
通道范围/μm V1: 0.970~0.990 V8: 0.655~0.675 S1: 1.230~
1.250
T1: 8.125~
8.825
V2: 0.930~0.950 V9: 0.610~0.630 S2: 1.630~
1.650
T2: 8.925~
9.275
V3: 0.895~0.915 V10: 0.555~0.575
V4: 0.845~0.885 V11: 0.510~0.530
V5: 0.810~0.830 V12: 0.480~0.500
V6: 0.740~0.760 V13: 0.433~0.453
V7: 0.6775~0.6875 V14: 0.403~0.423
空间分辨率/m 100 200 400
Tab.1  天宫二号宽波段成像仪数据指标
Fig.2  RSEI计算过程
年份 指标 PC1 PC2 PC3 PC4
2018年 绿度(NDVI) 0.936 0.174 0.025 0.306
干度(NDBI) -0.828 0.218 0.503 0.117
湿度(WET) 0.737 0.608 0.216 -0.200
热度(LST) -0.642 0.671 -0.365 -0.064
特征值 2.517 0.898 0.434 0.151
贡献率/% 62.922 22.455 10.839 3.785
Tab.2  PCA结果
指标 绿度
(NDVI)
湿度
(WET)
干度
(NDBI)
热度
(LST)
RSEI
绿度
(NDVI)
1.000 0.783**① -0.723** -0.669** 0.935**
湿度
(WET)
0.783** 1.000 -0.747** -0.667** 0.842**
干度
(NDBI)
-0.723** -0.747** 1.000 0.52** -0.858**
热度
(LST)
-0.669** -0.667** 0.52** 1.000 -0.683**
RSEI 0.935** 0.842** -0.858** -0.683** 1.000
Tab.3  RSEI和各指标的相关性统计
指标 均值 标准差
绿度(NDVI) 0.574 0.148
干度(NDBI) 0.365 0.117
湿度(WET) 0.423 0.028
热度(LST) 0.779 0.084
RSEI 0.393 0.291
Tab.4  各指数及RSEI统计值
RSEI等级 划分依据 面积/km2 比例/%
[0,0.2) 1 012.80 38.83
较差 [0.2,0.4) 616.22 23.62
[0.4,0.6) 158.19 6.06
[0.6,0.8) 415.36 15.92
[0.8,1.0] 405.79 15.56
Tab.5  博湖县生态环境等级面积与比例
Fig.3  2018博湖县土地利用类型分类及RSEI结果等级
Fig.4  2018年博湖县RSEI Moran散点图
Fig.5  LISA集聚图和显著性水平图
Fig.6  三维散点特征图
气象指标 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 合计 年平均
平均气温/℃ -10.7 -5.3 8.3 14.1 18.2 22.9 23.9 22.9 16.3 8.8 0.1 -10.2 109.3 9.11
平均相对湿度/% 68 62 50 34 40 46 49 56 52 55 67 65 644 53.67
降水量/mm 0.8 0.1 5.6 0 25.2 4.7 1 15.4 1.9 14.3 0.2 0 69.2 5.77
蒸发量/mm 17.6 39.2 146 3 276.6 3 276.6 3 276.6 3 276.6 3 276.6 3 276.6 3 276.6 44.9 19.4 23 203.3 1 933.61
平均风速/(m.s-1) 1.4 1.5 2.2 2.8 3 2.4 2.3 2.1 2.1 1.8 1.7 1.6 24.9 2.08
日照时数/h 201 201.3 245.9 273.3 301.6 266.6 290.5 296.7 309.8 275.7 199.3 195.3 3057 254.75
Tab.6  2018年博湖县气候特征值
Fig.7  2014—2018年博湖县社会经济发展情况
[1] Jacobson C R. Identifification and quantifification of the hydrological impacts of imperviousness in urban catchments:A review[J]. Journal of Environmental Manage-Ment, 2011,92(6):1438-1448.
[2] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017.
National Bureau of Statistics of the People’s Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2017.
[3] Tao Y, Li F, John C, et al. Measuring urban environmental sustainability performance in China:A multi-scale comparison among different cities, urban clusters,and geographic regions[J]. Cities, 2019,94:200-210.
[4] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013,33(5):889-897.
Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013,33(5):889-897.
[5] 张洪敏, 张艳芳, 田茂, 等. 基于主成分分析的生态变化遥感监测——以宝鸡市城区为例[J]. 国土资源遥感, 2018,30(1):203-209.doi: 10.6046/gtzyyg.2018.01.28.
Zhang H M, Zhang Y F, Tian M, et al. Dynamic monitoring of eco-environment quality changes based on PCA:A case study of urban area of Baoji City[J]. Remote Sensing for Land and Resources, 2018,30(1):203-209.doi: 10.6046/gtzyyg.2018.01.28.
[6] 单薇, 金晓斌, 孟宪素, 等. 基于多源遥感数据的土地整治生态环境质量动态监测[J]. 农业工程学报, 2019,35(1):234-242.
Shan W, Jin X B, Meng X S, et al. Dynamical monitoring of ecological environment quality of land consolidation based on multi-source remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(1):234-242.
[7] 徐志刚, 郑鸿瑞, 戴晨曦, 等. 永定客家土楼世界遗产地土地覆盖与生态变化遥感评价[J]. 国土资源遥感, 2018,30(1):102-108.doi: 10.6046/gtzyyg.2018.01.14.
Xu Z G, Zheng H R, Dai C X, et al. Evaluation of land cover and ecological change of Yongding Hakka Tulou World Heritage Protection Area using remote sensing image[J]. Remote Semsing for Land and Resources, 2018,30(1):102-108.doi: 10.6046/gtzyyg.2018.01.14.
[8] 罗春, 刘辉, 戚陆越. 基于遥感指数的生态变化评估——以常宁市为例[J]. 国土资源遥感, 2014,26(4):145-150.doi: 10.6046/gtzyyg.2014.04.23.
doi: 10.6046/gtzyyg.2014.04.23
Luo C, Liu H, Qi L Y. Ecological changes assessment based on remote sensing indices:A case study of Changning City[J]. Remote Sensing for Land and Resources, 2014: 26(4):145-150.doi: 10.6046/gtzyyg.2014.04.23.
[9] Tang Y, Wei J, Huang X, et al. Research on on-board calibration system of Tiangong-2 wide-band imaging spectrometer[C]// Gu Y,Gao M,Zhao G.Proceedings of the Tiangong-2 Remote Sensing Application Conference.Lecture Notes in Electrical Engineering, 2019:28-39.
[10] 石满, 陈健, 覃帮勇, 等. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018,33(5):811-819.
Shi M, Chen J, Qin B Y, et al. Inversion of land surface temperature and its application in urban agglomeration thermal environment monitoring based on Tiangong-2 data[J]. Remote Sensing Technology and Application, 2018,33(5):811-819.
[11] 孙明, 钟仕全, 谢敏, 等. 天宫二号对地观测数据在生态评价中的应用研究[J]. 气象研究与应用, 2018,39(4):40-43.
Sun M, Zhong S Q, Xie M, et al. Application of earth observation data of Tiangong2 in ecological assessment[J]. Journal of Meteorological Research and Application, 2018,39(4):40-43.
[12] Peng S, Xi X, Wang C. Land use change monitoring in Angkor wat based on Tiangong-2 wide band imaging data[C]// Gu Y,Gao M,Zhao G.Proceedings of the Tiangong-2 Remote Sensing Application Conference.Lecture Notes in Electrical Engineering, 2019:254-263.
[13] Mu L, Li S, Qin B, et al. Drought monitoring using Tiangong-2 wide-band spectrometer data[C]// Gu Y,Gao M,Zhao G.Proceedings of the Tiangong-2 Remote Sensing Application Conference.Lecture Notes in Electrical Engineering, 2019:277-285.
[14] Cong P, Chen K, Qu L, et al. Temporal and spatial changes of the Yellow River delta wetland based on multi-source data during 30 years[C]// Gu Y,Gao M,Zhao G.Proceedings of the Tiangong-2 Remote Sensing Application Conference.Lecture Notes in Electrical Engineering, 2019:286-299.
[15] 王凤英. 博湖县主要农业气象灾害及防灾减灾服务对策[J]. 农业灾害研究, 2019,9(1):80-81.
Wang F Y. Main agro-meteorological disasters in Bohu County and the disaster prevention and reduction coun-termeasures[J]. Journal of Agricultural Catastrophology, 2019,9(1):80-81.
[16] 刘康, 覃帮勇, 牟伶俐, 等. 基于多时相遥感影像的围填海动态监测与变化分析——以辽宁省部分沿海县市为例[J]. 海洋环境科学, 2017,36(6):911-917.
Liu K, Qin B Y, Mu L L, et al. Monitoring and analysing of reclamation change based on multi-data remote sensing images:A case study of partial area of Liaoning Province[J]. Marine Environmental Science, 2017,36(6):911-917.
[17] 刘康, 任海根, 李盛阳, 等. 基于天宫二号多光谱数据的青藏高原冻湖自动提取[J]. 红外与激光工程, 2019,48(3):32-38.
Liu K, Ren H G, Li S Y, et al. Automatic extraction of Tibet Plateau frozen lake based on Tiangong-2 multi-spectral data[J]. Infrared and Laser Engineering, 2019,48(3):32-38.
[18] Xu H Q, Wang M Y, Shi T T, et al. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI)[J]. Ecological Indicators, 2018,93(11):730-740.
[19] Seddon A W, Macias-Fauria M, Long P R, et al. Sensitivity of global terrestrial ecosystems to climate variability[J]. Nature, 2016,531(7593):229-232.
pmid: 26886790
[20] Luo R, Zhou J, Yang J, et al. Downscaling of Tiangong-2 land surface temperature[C]// Gu Y,Gao M,Zhao G.Proceedings of the Tiangong-2 Remote Sensing Application Conference.Lecture Notes in Electrical Engineering, 2019:170-179.
[21] Zawadzki J, Przezdziecki K, Miatkowski Z. Determining the area of influence of depression cone in the vicinity of lignite mine by means of triangle method and Landsat TM/ETM+ satellite images[J]. Journal of Environmental Management, 2016,166:605-614.
doi: 10.1016/j.jenvman.2015.11.010 pmid: 26610610
[22] Wei W, Guo Z, Xie B, et al. Spatiotemporal evolution of environment based on integrated remote sensing indexes in arid inland river basin in Northwest China[J]. Environmental Science and Pollution Research, 2019,26:13062-13084.
doi: 10.1007/s11356-019-04741-x pmid: 30891703
[23] Estoque R C, Murayama Y, Myint S W. Effects of landscape composition and pattern on land surface temperature:An urban heat island study in the megacities of Southeast Asia[J]. Science of the Total Environment, 2017,577:349-359.
[24] 徐涵秋. 水土流失区生态变化的遥感评估[J]. 农业工程学报, 2013,29(7):91-97.
Xu H Q. Assessment of ecological change in soil loss area using remote sensing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(7):91-97.
[25] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013,33(24):7853-7862.
Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013,33(24):7853-7862.
[26] 江振蓝, 龚振彬, 潘辉, 等. 空间自相关局部指标在城市热岛界定中的应用[J]. 国土资源遥感, 2018,30(3):136-142.doi: 10.6046/gtzyyg.2018.03.19.
Jiang Z L, Gong Z B, Pan H, et al. Application of local spatial autocorrelation indices to the delimitation of urban heat island[J]. Remote Sensing for Land and Resources, 2018,30(3):136-142.doi: 10.6046/gtzyyg.2018.03.19.
[27] 巩杰, 谢余初, 赵彩霞, 等. 甘肃白龙江流域景观生态风险评价及其时空分异[J]. 中国环境科学, 2014,34(8):2153-2160.
Gong J, Xie Y C, Zhao C X, et al. Landscape ecological risk assessment and its spatio temporal variation of the Bailongjiang watershed,Gansu[J]. China Environmental Science, 2014,34(8):2153-2160.
[28] 约日古丽卡斯木, 孜比布拉·司马义, 王蕾, 等. 新疆博乐市生态环境变化对城市建设用地扩张的响应[J]. 农业工程学报, 2019,35(1):252-259.
Yueriguli K, Zibibula S, Wang L, et al. Response of ecological environment change to urban construction land expansion in Bole City of Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(1):252-259.
[29] 王丽春, 焦黎, 来风兵, 等. 新疆精河县生态变化评价及驱动力研究[J]. 生态与农村环境学报, 2019,35(3):316-323.
Wang L C, Jiao L, Lai F B, et al. Study on evaluation and driving forces of ecological changes in Jinghe County,Xinjiang[J]. Journal of Ecology and Rural Environment, 2019,35(3):316-323.
[30] 方创琳, 高倩, 张小雷, 等. 城市群扩展的时空演化特征及对生态环境的影响——以天山北坡城市群为例[J]. 中国科学(地球科学), 2019,49(9):1413-1424
Fang C L, Gao Q, Zhang X L, et al. Spatiotemporal characteristics of the expansion of an urban agglomeration and its effect on the eco-environment:Case study on the northern slope of the Tianshan Mountains[J]. Science China Earth Sciences, 2019,49(9):1413-1424.
[1] 秦大辉, 杨灵, 谌伦超, 段云飞, 贾宏亮, 李贞培, 马建琴. 基于多源数据的新疆干旱特征及干旱模型研究[J]. 自然资源遥感, 2022, 34(1): 151-157.
[2] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[3] 魏英娟, 刘欢. 北衙金矿床遥感矿化蚀变信息提取及找矿预测[J]. 自然资源遥感, 2021, 33(3): 156-163.
[4] 陈震, 夏学齐, 陈建平. 土地生态质量遥感评价模型与主控因子研究——以广安市为例[J]. 国土资源遥感, 2021, 33(1): 191-198.
[5] 刘慧, 齐增湘, 黄傅强. 洞庭湖区城镇化与鸟类生境时空分异及关联分析[J]. 国土资源遥感, 2020, 32(3): 191-199.
[6] 姚本佐, 何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019, 31(3): 59-64.
[7] 阿茹罕, 何芳, 王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[8] 董立新. 三峡库区森林叶面积指数多模型遥感估算[J]. 国土资源遥感, 2019, 31(2): 73-81.
[9] 涂兵, 张晓飞, 张国云, 王锦萍, 周瑶. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1): 22-32.
[10] 尹凌宇, 覃先林, 孙桂芬, 刘树超, 祖笑锋, 陈小中. 利用KPCA法检测高分一号影像中的森林覆盖变化[J]. 国土资源遥感, 2018, 30(1): 95-101.
[11] 徐志刚, 郑鸿瑞, 戴晨曦, 高鹏, 杜培军. 永定客家土楼世界遗产地土地覆盖与生态变化遥感评价[J]. 国土资源遥感, 2018, 30(1): 102-108.
[12] 张洪敏, 张艳芳, 田茂, 吴春玲. 基于主成分分析的生态变化遥感监测——以宝鸡市城区为例[J]. 国土资源遥感, 2018, 30(1): 203-209.
[13] 张倩宁, 谭诗腾, 徐柱, 黄泽纯. 基于GLC30数据的斑块级别景观指标适用性及简化研究[J]. 国土资源遥感, 2017, 29(4): 98-105.
[14] 金平斌, 徐鹏飞. 基于DMSP/OLS夜间灯光数据的城镇化进程及格局研究——以杭州市为例[J]. 国土资源遥感, 2017, 29(4): 205-213.
[15] 邓曾, 李丹, 柯樱海, 吴燕晨, 李小娟, 宫辉力. 基于改进SVM算法的高分辨率遥感影像分类[J]. 国土资源遥感, 2016, 28(3): 12-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发