Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (1): 174-182    DOI: 10.6046/gtzyyg.2020028
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于SWAT模型的汉江上游流域径流情景预测研究
马新萍1,2(), 武涛3, 余玉洋2
1.咸阳师范学院资源环境与历史文化学院,咸阳 712000
2.陕西师范大学地理科学与旅游学院,西安 710126
3.西北工业大学自动化学院,西安 710129
A study of runoff scenario prediction in the upper reaches of Hanjiang River based on SWAT model
MA Xinping1,2(), WU Tao3, YU Yuyang2
1. College of Resources, Environment, History and Culture, Xianyang Normal University, Xianyang 712000, China
2. College of Equipment Management and UAV Engineering, Air Force Engineering University, Xi’an 710126, China
3. College of Automation, Northwest Polytechnic University, Xi’an 710129, China
全文: PDF(6290 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

气候变化和土地利用是影响径流变化的主要驱动因素,为了精确预测未来汉江上游流域径流量变化趋势,基于SWAT模型、天气发生器BCC/RCG-WG以及CA-Markov模型预测了未来2种土地利用变化模式下的径流量变化,土地利用情景的设置建立在CA-Markov模型预测结果的基础之上,结合全国林地保护利用规划目标以及汉江上游林地具体情况。结果显示: 未来汉江上游流域径流将呈现明显的上升趋势,林地增加情景下径流量升高率少于自然生态情景,这可能与林地增多导致生态需水量增大有关,因此,对于汉江上游流域的水资源保护不可盲目投入大量人为林地增加,而应遵循植被自然生长规律,延续当前生态保护政策,尽量以减少人为污染、提高全民节约用水思想意识策略为主。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马新萍
武涛
余玉洋
关键词 SWAT模型CA-Markov模型BCC/RCG-WG径流预测汉江上游    
Abstract

The main driving factors of runoff change are climate change and land use. In order to accurately predict the runoff change trend in the upper reaches of Hanjiang River in the future, the authors predicted runoff changes under the two land-use change modes based on SWAT model, weather generator BCC /RCG-WG and Ca-Markov model. The setting of land-use scenarios was based on the prediction results of Ca-Markov model. The results show that, in the future, the runoff in the upper reaches of Hanjiang River will show an obvious upward trend, and the increase rate of runoff under the scenario of increasing forest land is less than that in the natural ecological scenario, which may be related to the increase of ecological water demand caused by the increase of forest land. Therefore, the protection of water resources in the upper reaches of Hanjiang River is not feasible. Researchers should follow the natural growth law of vegetation, continue the current ecological protection policy, try to reduce man-made pollution and improve the ideological awareness of water conservation.

Key wordsSWAT model    CA Markov model    BCC/RCG-WG    runoff prediction    upper reaches of Hanjiang River
收稿日期: 2019-08-28      出版日期: 2021-03-18
ZTFLH:  TP79  
基金资助:陕西省教育厅专项科研计划项目“基于SWAT模型的汉江上游土地利用与气候变化对径流的影响”资助(19JK0931)
作者简介: 马新萍(1988-),女,讲师,主要从事土地资源保护方面的研究。Email: maxinping_2007@126.com
引用本文:   
马新萍, 武涛, 余玉洋. 基于SWAT模型的汉江上游流域径流情景预测研究[J]. 国土资源遥感, 2021, 33(1): 174-182.
MA Xinping, WU Tao, YU Yuyang. A study of runoff scenario prediction in the upper reaches of Hanjiang River based on SWAT model. Remote Sensing for Land & Resources, 2021, 33(1): 174-182.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020028      或      https://www.gtzyyg.com/CN/Y2021/V33/I1/174
Fig.1  研究区概况
Fig.2  子流域划分及空间数据准备
Fig.3  率定期和验证期逐月径流量模拟值与观测值对比图
Fig.4  驱动因子数据集
Fig.5  2015年土地利用分类图与模拟图
类别 建设用地 耕地 林地 草地 未利用地 水域 总精度
Kappa系数 0.982 0 0.991 8 0.997 3 0.664 8 0.828 1 0.335 0 0.985 8
Tab.1  2015年土地利用模拟结果精度检验指标值
Fig.6  2025年土地利用情景空间分布图
地类 自然生态情景 林地增加情景
耕地 0.15 -0.21
林地 0.01 5.00
草地 -0.02 -4.45
水域 -0.01 -0.01
建设 -0.12 -0.22
未利用地 -0.01 -0.11
Tab.2  2025年土地利用情景
Fig.7  不同情景下未来径流变化趋势
[1] 宋晓猛, 张建云, 占车生, 等. 气候变化和人类活动对水文循环影响研究进展[J]. 水利学报, 2013,44(7):779-790.
Song X M, Zhang J Y, Zhan C S, et al. Research Progress on the impact of climate change and human activities on hydrological cycle[J]. Journal of Water Conservancy, 2013,44(7):779-790.
[2] 夏军, 马协一, 邹磊, 等. 气候变化和人类活动对汉江上游径流变化影响的定量研究[J]. 南水北调与水利科技, 2017,15(1):1-6.
Xia J, Ma X Y, Zou L, et al. Quantitative study on the impact of climate change and human activities on runoff change in the upper reaches of Hanjiang River[J]. South to North Water Diversion and Water Conservancy Science and Technology, 2017,15(1):1-6.
[3] 史超, 夏军, 佘敦先, 等. 气候变化下汉江上游林地植被生态需水量的时空演变[J]. 长江流域资源与环境, 2016,25(4):580-589.
Shi C, Xia J, She D X, et al. Temporal and spatial evolution of ecological water demand of woodland vegetation in the upper reaches of Hanjiang River under climate change[J]. Resources and Environment in the Yangtze River Basin, 2016,25(4):580-589.
[4] Worku T, Khare D, Tripathi S K. Modeling runoff-sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed[J]. Environmental Earth Sciences, 2017,76(16):550.
[5] Ayivi F, Jha M K. Estimation of water balance and water yield in the Reedy Fork-Buffalo Creek Watershed in North Carolina using SWAT[J]. International Soil and Water Conservation Research, 2018:S2095633917302411.
[6] Moshtaghi B, Niksokhan M H, Ghazban F, et al. Assessing the Impacts of Climate Change on the Quantity and Quality of Agricultural Runoff (Case Study:GOLGOL River Basin)[J]. Irrigation and Drainage, 2018: 468-478.
[7] Shiferaw H, Gebremedhin A, Gebretsadkan T, et al. Modelling hydrological response under climate change scenarios using SWAT model:The case of Ilala watershed,Northern Ethiopia[J]. Modeling Earth Systems and Environment, 2018: 546-556.
[8] Dhami B, Himanshu S K, Pandey A, et al. Evaluation of the SWAT model for water balance study of a mountainous snowfed river basin of Nepal[J]. Environmental Earth Sciences, 2018,77(1):21.
[9] Yan X M, Lu W X, An Y K, et al. Uncertainty analysis of parameters in non‐point source pollution simulation:Case study of the application of the Soil and Water Assessment Tool model to Yitong River watershed in northeast China[J]. Water and Environment Journal, 2019,33(3):246-237.
[10] Achamyeleh M, van Leon R, Woyessa Y L. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa[J]. Journal of Hydrology:Regional Studies, 2019,25:56-67.
[11] Achamyeleh M. Hydrology;Findings in the Area of Hydrology Reported from University of Oslo (Uncertainty In Simulation of Land-use Change Impacts On Catchment Runoff With Multi-timescales Based On the Comparison of the Hspf and SWAT Models)[J]. Science Letter, 2019,55:66-67.
[12] McDonald S, Mohammed I N, Bolten J D, et al. A web-based decision support system tools:The Soil and Water Assessment Tool online visualization and analyses (SWAT Online) and NASA earth observation data downloading and reformatting tool (NASAaccess)[J]. Environmental Modelling and Software, 2019,87:486-495.
[13] Arnold J G, Srinivasan R, Ramanarayanan T S, et al. Water resources of the Texas gulf basin[J]. Water Science and Technology, 1999,39(3):121-133.
[14] McDonald S, Mohammed I N, Bdten J D, et al. Web-based decision support system tools:The Soil and Water Assessment Tool online visualization and analyses (SWAT Online) and NASA earth observation data downloading and reformatting tool (NASA access)[J]. Environmental Modelling and Software, 2019,2(3):56-68.
[15] 王莺, 张强, 王劲松, 等. 基于分布式水文模型(SWAT)的土地利用和气候变化对洮河流域水文影响特征[J]. 中国沙漠, 2017,37(1):175.
Wang Y, Zhang Q, Wang J S, et al. Hydrological impact of land use and climate change on Tao River Basin Based on SWAT[J]. Deserts in China, 2017,37(1):175.
[16] 赵杰, 徐长春, 高沈瞳, 等. 基于SWAT模型的乌鲁木齐河流域径流模拟[J]. 干旱区地理, 2015,38(4):666.
Zhao J, Xu C C, Gao S T, et al. Runoff simulation of Urumqi River Basin Based on SWAT Model[J]. Arid Land Geography, 2015,38(4):666.
[17] 袁宇志, 张正栋, 蒙金华. 基于SWAT模型的流溪河流域土地利用与气候变化对径流的影响[J]. 应用生态学报, 2015,26(4):989.
pmid: 26259438
Yuan Y Z, Zhang Z D, Meng J H. Effects of land use and climate change on runoff in Liuxi River Basin based on SWAT model[J]. Chinese Journal of Applied Ecology, 2015,26(4):989.
pmid: 26259438
[18] 刘世梁, 安南南, 尹艺洁, 等. 基于SWAT模型的澜沧江中游小流域水土流失与NDVI时空动态相关性[J]. 水土保持学报, 2016,30(1):62.
Liu S L, An N N, Yi Y J, et al. Spatiotemporal correlation between soil erosion and NDVI in the middle reaches of Lancang River Based on SWAT Model[J]. Journal of Soil and Water Conservation, 2016,30(1):62.
[19] 孟现勇, 王浩, 雷晓辉, 等. 基于CMDAS驱动SWAT模式的精博河流域水文相关分量模拟、验证及分析[J]. 生态学报, 2017,37(21):7114.
Meng X Y, Wang H, Lei X H, et al. Simulation, verification and analysis of hydrological related components in Jingbo River Basin based on SWAT model driven by cmdas[J]. Journal of Ecology, 2017,37(21):7114.
[20] 郭军庭, 张志强, 王盛萍, 等. 应用SWAT模型研究潮河流域土地利用和气候变化对径流的影响[J]. 生态学报, 2014,34(6):1559.
Guo J T, Zhang Z Q, Wang S P, et al. Effects of land use and climate change on Runoff in Chaohe River Basin using SWAT model[J]. Journal of Ecology, 2014,34(6):1559.
[21] 渠勇建, 成向荣, 虞木奎, 等. 基于SWAT模型的衢江流域土地利用变化径流模拟研究[J]. 水土保持研究, 2019,26(1):130-134.
Qu Y J, Cheng X R, Yu M K, et al. Runoff simulation of land use change in Qujiang River Basin based on SWAT model[J]. Study on Soil and Water Conservation, 2019,26(1):130-134.
[22] Anand J, Gosain A K, Khosa R. Prediction of land use changes based on land change modeler and attribution of changes in the water balance of Ganga Basin to land use change using the SWAT model[J]. Science of the Total Environment, 2018,644:503-519.
[23] 吴林川, 宋婴婴. 加权马尔科夫链在榆林市降水量预测中的应用[J]. 人民长江, 2017,48(s1):82-84,100.
Wu L C, Song Y Y. Application of weighted Markov chain in precipitation prediction of Yulin City[J]. People’s Yangtze River, 2017,48(s1):82-84,100.
[24] Gong W F, Li Y, Fan W Y, et al. Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata-Markov modelling[J]. International Journal of Applied Earth Observation and Geoinformation, 2015(34):207-216.
[25] 黄晓磊, 刘东云. 基于CA-Markov模型的天津市土地利用预测研究[J]. 中国农业科技导报, 2012,14(5):84-89.
Huang X L, Liu D Y. Study on land use prediction of Tianjin based on Ca Markov model[J]. China Agricultural Science and Technology Guide, 2012,14(5):84-89.
[26] 廖要明. 中国天气发生器BCC/RCG-WG的研究与应用[D]. 北京:北京师范大学, 2012.
Liao Y M. Research and application of BCC/rcg-wg weather generator in China[D]. Beijing:Beijing Normal University, 2012.
[27] Schuol J, Abbaspour K C, Srinivasan R, et al. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model[J]. Journal of Hydrology, 2008,352(1/2):30-49.
[28] 中央政府门户网站. 全国林地保护利用规划纲要(2010—2020年)[EB/OL].(2010-8-24). http://www.gov.cn/zxft/ft205/content_1695019.htm.
Central Government Portal. Outline of national forest land protection and utilization planning (2010—2020)[EB/OL].(2010-8-24). http://www.gov.cn/zxft/ft205/content_1695019.htm.
[29] 叶加俊. 汉江上游流域径流模拟及未来气候变化响应[D]. 武汉:华中科技大学, 2018.
Ye Jiajun. Runoff simulation and future climate change response in the upper reaches of Hanjiang River[D]. Wuhan:Huazhong University of Science and Technology, 2018.
[1] 姚昆, 张存杰, 何磊, 李玉霞, 李小菊. 雅砻江中上游流域生态环境脆弱性动态评价及预测[J]. 国土资源遥感, 2020, 32(4): 199-208.
[2] 陈爱玲, 都金康. 基于CA-Markov模型的秦淮河流域土地覆盖格局模拟预测[J]. 国土资源遥感, 2014, 26(2): 184-189.
[3] 闫强, 廖静娟, 沈国状. 近40年乌兰乌拉湖变化的遥感分析与水文模型模拟[J]. 国土资源遥感, 2014, 26(1): 152-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发