Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (1): 1-8    DOI: 10.6046/gtzyyg.2020068
     综述 本期目录 | 过刊浏览 | 高级检索 |
高亚洲地区冰湖遥感研究进展与展望
潘梦1(), 曹云刚1,2()
1.西南交通大学地球科学与环境工程学院,成都 611756
2.西南交通大学高速铁路运营安全空间信息技术国家地方联合工程实验室,成都 611756
Present status and perspectives of remote sensing survey of glacial lakes in High Asia
PAN Meng1(), CAO Yungang1,2()
1. Faculty of Geosciences and Environmental Engineering Southwest Jiaotong University, Chengdu 611756,China
2. State-Province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Railway Safety, Southwest Jiaotong University, Chengdu 611756, China
全文: PDF(3574 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高亚洲是全球冰湖分布最为集中的地区之一,利用遥感技术开展该区域的冰湖研究对于全球变化分析与自然灾害评估具有重要意义。参考国内外大量研究文献与报告,全面回顾了高亚洲冰湖信息遥感提取数据源、信息提取方法的发展历程,并进一步围绕冰湖时空变化格局及其对全球变化的响应等方面,详细分析了目前国内外针对高亚洲冰湖相关研究的进展及主要成果。结合遥感机理与图像处理技术、遥感数据源的最新发展,对高时空分辨率遥感在冰湖相关研究领域的发展趋势进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘梦
曹云刚
关键词 遥感冰湖高亚洲时空变化气候变化    
Abstract

High Asia is one of the regions with the most concentrated distribution of glacial lakes in the world, and the use of remote sensing technology to carry out glacial lake research in this region is of great significance for global change analysis and natural disaster assessment. This paper refers to a large number of domestic and foreign research literature and reports, comprehensively reviews the development process of data sources and information extraction methods for remote sensing data extraction of high Asian glacial lakes, and further analyzes the spatial and temporal changes of glacial lakes and their responses to global changes. The current research progress and main achievements of the research on the high Asian glacial lake in China and abroad are analyzed in detail. Finally, combined with the latest development of remote sensing mechanism, image processing technology and remote sensing data source, the development trend of high-spatial-resolution remote sensing in glacial lake related research fields is predicted.

Key wordsremote sensing    glacial lake    High Asia    spatio-temporal change    climate change
收稿日期: 2020-03-06      出版日期: 2021-03-18
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“高速铁路沿线地表环境隐患的语义理解与遥感智能识别”资助(41771451)
通讯作者: 曹云刚
作者简介: 潘 梦(1993-),女,硕士研究生,主要从事资源环境遥感应用方面的研究。Email: 17828176816@163.com
引用本文:   
潘梦, 曹云刚. 高亚洲地区冰湖遥感研究进展与展望[J]. 国土资源遥感, 2021, 33(1): 1-8.
PAN Meng, CAO Yungang. Present status and perspectives of remote sensing survey of glacial lakes in High Asia. Remote Sensing for Land & Resources, 2021, 33(1): 1-8.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020068      或      https://www.gtzyyg.com/CN/Y2021/V33/I1/1
Fig.1  1990—2019年高亚洲冰湖研究国家分布
Fig.2  1990—2019年高亚洲冰湖研究成果与引文数量变化趋势
Fig.3  高亚洲冰湖研究关键字词云图
Fig.4  高亚洲不同地区冰湖研究文章数量统计图
Fig.5  地面调查技术与装备
卫星/传感器 空间分
辨率/m
重访周
期/d
发射时间
MODIS Terra/aqua 250 1 1999-12/2002-05
Landsat MSS 80 18 1972-07/1975-01/1978-03/1982-07/1984/03
Landsat TM 30 16 1982-07/1984-03
Landsat ETM+ 30(全色15) 16 1999-04
Landsat OLI 16 16 2013-02
SPOT 1-4 20 26 1986-02/1990-01/1993-09
SPOT 5 10 5 2002-05
IKONOS 4(全色1) 3 1999-09
RESOURCESAT-1(LISS 3) 23.5(全色5.8) 24 2013-7
QuickBird 2.44 1-6 2001-10
ASTER 15 16 1999-12
Sentinel-1 5 12 2014-04
Sentinel-2 10 10 2015-06
GF-1 8(全色2) 4 2013-04
GF-2 4(全色1) 5 2014-08
Tab.1  冰湖遥感监测常用星载遥感数据列表
区域/流域 时段/年 前一期面
积/km2
后一期面
积/km2
年平均面积变
化/(km2·a-1)
年平均面积变
化率/(%·a-1)
参考文献
阿尔泰山 1992—2013 205.796 235.825 1.430 0.690 [32]
北天山 1990—2010 15.89±2.90 19.53±3.43 0.182 1.150 [33]
西天山 1990—2010 7.37±1.11 9.15±1.42 0.089 1.210 [33]
中央天山 1990—2010 37.38±4.67 39.05±4.99 0.084 0.230 [33]
东天山 1990—2010 22.08±3.19 28.79±4.39 0.336 1.520 [33]
西昆仑山(塔里木盆地) 1990—2013 6.98±1.10 8.92±1.19 0.084 1.210 [2]
喀喇昆仑山(塔里木盆地) 1990—2013 14.74±1.13 16.81±1.09 0.090 0.609 [2]
阿尔金山(塔里木盆地) 1990—2013 1.00±0.33 1.55±0.38 0.024 2.390 [2]
帕米尔高原(塔里木盆地) 1990—2013 78.01±2.74 86.07±2.67 0.350 0.449 [2]
藏东南 1988—2013 85.58 93.65 0.323 0.377 [36]
横断山 1990—2014 248.9±29.9 255.8±31.6 0.288 0.117 [1]
喜马拉雅山 1990—2015 398.9±65.3 455.3±72.7 2.256 0.570 [30]
Tab.2  近30年高亚洲不同地区冰湖时空变化研究结果列表
Fig.6  高亚洲各区域21世纪前后冰湖变化专题图
[1] Wang X, Chai K, Liu S, et al. Changes of glaciers and glacial lakes implying corridor-barrier effects and climate change in the Hengduan Shan,southeastern Tibetan Plateau[J]. Journal of Glaciology, 2017,63(239):535-542.
[2] Wang X, Liu Q, Liu S, et al. Heterogeneity of glacial lake expansion and its contrasting signals with climate change in Tarim Basin,Central Asia[J]. Environmental Earth Sciences, 2016,75(8):696.
[3] Merzbacher G. The Central Tian-Shan Mountains 1902-1903[M]. London:J Murray, 1905.
[4] Zhang M, Chen F, Tian B. Glacial lake detection from GaoFen-2 multispectral imagery using an integrated nonlocal active contour approach:A case study of the Altai Mountains,Northern Xinjiang Province[J]. Water, 2018,10(4):455.
[5] Zhang G, Yao T, Xie H, et al. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming[J]. Global and Planetary Change, 2015,131:148-157.
[6] Xu Q H, Liu D M, Feng C H. Dagerous glacial lake and outburst featuresin Xizang Himalayas[J]. Acta Geographica Sinica, 1989,44(3):343-352.
[7] 杨成德, 王欣, 魏俊锋, 等. 2015 年中国西部冰湖编目数据集[J/OL]. 中国科学数据, 2018,3(4).2018-06-28.doi: 10.11922/csdata.2018.0038.zh.
Yang C D, Wang X, Wei J F, et al. A dataset of glacial lake inventory of West China in 2015[J/OL]. China Science Data, 2018,3(4).2018-06-28.doi: 10.11922/csdata.2018.0038.zh.
[8] Wang X, Guo X Y, Yang C D, et al. Glacial lake inventory of High Mountain Asia[J]. National Cryosphere and Desert Scientific Data Center, 2019.doi: 10.12072/casnw.064.2019.db.
[9] Frey H, Huggel C, Paul F, et al. Automated detection of glacier lakes based on remote sensing in view of assessing associated hazard potentials[J]. Grazer Schriften der Geographie und Raumforschung, 2010,45:261-272.
[10] 王欣, 吴坤鹏, 蒋亮虹, 等. 近20年天山地区冰湖变化特征[J]. 地理学报, 2013,68(7):983-993.
Wang X, Wu K P, Jiang L H, et al. Wide expansion of glacial lakes in Tianshan Mountains during 1990-2010[J]. Acta Geographica Sinica, 2013,68(7):983-993.
[11] Raj G, Babu K, Kumar V K, et al. Remote sensing-based inventory of glacial lakes in Sikkim Himalaya:Semi-automated approach using satellite data[J]. Geomatics,Natural Hazards and Risk, 2013,4(3):241-253.
[12] 张波, 张瑞, 刘国祥, 等. 基于SAR影像的贡巴冰川末端冰湖年际变化监测及溃决规律分析[J]. 武汉大学学报信息科学版, 2019,44(7):1054-1064.
Zhang B, Zhang R, Liu G X, et al. Monitoring of interannual variabilities and outburst regularities analysis of glacial lakes at the end of Gongba glacier utilizing SAR images[J]. Geomatics and Information Science of Wuhan University, 2019,44(7):1054-1064.
[13] Mitkari K V, Arora M K, Tiwari R K. Extraction of glacial lakes in gangotri glacier using object-based image analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(12):5275-5283.
[14] Jain S K, Sinha R K, Chaudhary A, et al. Expansion of a glacial lake,Tsho Chubda,Chamkhar Chu Basin,Hindukush Himalaya,Bhutan[J]. Natural Hazards, 2015,75(2):1451-1464.
[15] Bulley H N N, Bishop M P, Shroder J F, et al. Integration of classification tree analyses and spatial metrics to assess changes in supraglacial lakes in the Karakoram Himalaya[J]. International Journal of Remote Sensing, 2013,34(2):387-411.
[16] Li J, Sheng Y. An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models:A case study in the Himalayas[J]. International Journal of Remote Sensing, 2012,33(16):5194-5213.
[17] Zhao H, Chen F, Zhang M. A systematic extraction approach for mapping glacial lakes in high mountain regions of Asia[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018,11(8):2788-2799.
[18] Chen F, Zhang M, Tian B, et al. Extraction of glacial lake outlines in Tibet Plateau using Landsat 8 imagery and Google Earth Engine[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(9):4002-4009.
[19] Zhang M, Chen F, Tian B. Glacial lake detection from GaoFen-2 multispectral imagery using an integrated nonlocal active contour approach:A case study of the Altai mountains,northern Xinjiang Province[J]. Water, 2018,10(4):455.
[20] Veh G, Korup O, Roessner S, et al. Detecting Himalayan glacial lake outburst floods from Landsat time series[J]. Remote Sensing of Environment, 2018,207:84-97.
[21] Bhardwaj A, Singh M K, Joshi P K, et al. A lake detection algorithm (LDA) using Landsat 8 data:A comparative approach in glacial environment[J]. International Journal of Applied Earth Observation and Geoinformation, 2015,38:150-163.
[22] Cook S J, Quincey D J. Estimating the volume of Alpine glacial lakes[J]. Earth Surface Dynamics Discussions, 2015,3(3):909-940.doi: 10.5194/esurfd-3-909-2015
[23] Yao X J, Liu S, Sun M, et al. Volume calculation and analysis of the changes in moraine-dammed lakes in the north Himalaya:A case study of Longbasaba lake[J]. Journal of Glaciology, 2012,58(210):753-760.
[24] Yang R M, Zhu L P, Wang Y J, et al. Study on the variations of lake area & volume and their effect on the occurrence of outburst of MUDUI glacier lake in southeastern Tibet[J]. Progress in Geography, 2012,31(9):1133-1140.
[25] Song C, Sheng Y. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis[J]. Climatic Change, 2016,135(3-4):493-507.
[26] Cook S J, Quincey D J. Estimating the volume of Alpine glacial lakes. Earth Surface Dynamics Discussions, 2015,3(3):909-940.
[27] Zhe M, Zhang X, Wang B, et al. Hydrochemical regime and its mechanism in Yamzhog Yumco Basin,South Tibet[J]. Journal of Geographical Sciences, 2017,27(9):1111-1122.
[28] Yan H M, Yao Z, Huang H, et al. Water quality and light absorption attributes of glacial lakes in Mount Qomolangma region[J]. Journal of Geographical Sciences, 2013,23(5):860-870.
[29] 闫露霞, 孙美平, 姚晓军, 等. 青藏高原湖泊水质变化及现状评价[J]. 环境科学学报, 2018,38(3):900-910.
Yan L X, Sun M P, Yao X J, et al. Lake water in the Tibet Plateau:Quality change and current status evaluation[J]. Acta Sci Circumst, 2018,38(3):900-910.
[30] Salerno F, Rogora M, Balestrini R, et al. Glacier melting increases the solute concentrations of Himalayan glacial lakes[J]. Environmental Science & Technology, 2016,50(17):9150-9160.
doi: 10.1021/acs.est.6b02735 pmid: 27466701
[31] 王欣, 刘时银, 莫宏伟, 等. 我国喜马拉雅山区冰湖扩张特征及其气候意义[J]. 地理学报, 2011,66(7):895-904.
Wang X, Liu S Y, Mo H W, et al. Expansion of glacial lakes and its implication for climate changes in the Chinese Himalaya[J]. Acta Geographica Sinica, 2011,66(7):895-904.
[32] Nie Y, Sheng Y, Liu Q, et al. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015[J]. Remote Sensing of Environment, 2017,189:1-13.
[33] 舒梅海. 近25年阿尔泰山区冰川冰湖变化及特征[D]. 湘潭:湖南科技大学, 2017.
Shu M H. Variations and characters of glacier and glacial Lakesin Altai Mountains in recent 25 years[D]. Xiangtan:Hunan University of Science and Technology, 2017.
[34] 吴坤鹏. 天山冰湖变化及其影响研究[D]. 湘潭:湖南科技大学, 2014.
Wu K P. The change of glacial lake and its influence in Tianshan Mountains[D]. Xiangtan:Hunan University of Science and Technology, 2014.
[35] Gardelle J, Arnaud Y, Berthier E. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009[J]. Global and Planetary Change, 2011,75(1-2):47-55.
[36] Nie Y, Sheng Y, Liu Q, et al. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015[J]. Remote Sensing of Environment, 2017,189:1-13.
doi: 10.1016/j.rse.2016.11.008
[37] Song C, Sheng Y, Ke L, et al. Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes[J]. Journal of Hydrology, 2016,540:504-514.
[38] Hasnain S I. Impact of climate change on Himalayan glaciers and glacier lakes [C]// Proc. Taal 2007:The 12th World Lake Conf. 2008: 1088-1091.
[39] Wu S, Yao Z, Huang H, et al. Responses of glaciers and glacial lakes to climate variation between 1975 and 2005 in the Rongxer basin of Tibet,China and Nepal[J]. Regional Environmental Change, 2012,12(4):887-898.
[1] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[2] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[3] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[4] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[5] 唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
[6] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[7] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[8] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[9] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[10] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[11] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[12] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[13] 马世斌, 皮英楠, 王佳, 张焜, 李生辉, 彭玺. 基于遥感的绿色勘查高效监管方法体系研究[J]. 自然资源遥感, 2023, 35(2): 255-263.
[14] 王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
[15] 庞鑫, 刘珺. 气候变化对亚洲地区植被NDVI变化的影响[J]. 自然资源遥感, 2023, 35(2): 295-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发