Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (1): 102-107    DOI: 10.6046/gtzyyg.2020090
     技术方法 本期目录 | 过刊浏览 | 高级检索 |
无人工标注数据的Landsat影像云检测深度学习方法
仇一帆(), 柴登峰()
浙江大学地球科学学院,杭州 310027
A deep learning method for Landsat image cloud detection without manually labeled data
QIU Yifan(), CHAI Dengfeng()
School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
全文: PDF(2666 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

云和云阴影检测是Landsat影像产品生产的重要环节。近年来,深度学习极大提升了Landsat影像云检测的精度,但是深度卷积神经网络模型的训练依赖庞大规模的标注图像,需要人工标注出大量图像上每个像素是否为云或云阴影。人工标注成本高、耗时长,不利于训练出具有实用价值的模型。受弱监督学习启发,文章提出一种新的云和云阴影检测模型深度学习方法。首先,采用常规云检测算法CFMask检测Landsat8影像云及其阴影; 然后,将其替代人工标注图像用以训练深度卷积神经网络模型; 最后,应用训练所得模型检测新图像中的云及其阴影。实验结果表明,所提方法的总体精度为85.55%,与CFMask结果相比精度有所提升,说明利用非人工标注数据训练深度网络模型进而检测云和云阴影的思路是可行的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仇一帆
柴登峰
关键词 云和云阴影检测Landsat8影像卷积神经网络语义分割    
Abstract

Cloud and cloud shadow detection is an important part in the production of Landsat images. In recent years, deep learning has greatly improved the accuracy of cloud detection in Landsat images. However, deep convolutional neural network model training relies on a large scale of labeled images, and it is necessary to manually label each pixel as clearness, cloud or cloud shadow. Manually labeling is rather costly and time-consuming, which is not conducive to train practical models. Inspired by weakly supervised learning, this paper proposes a new deep learning method for cloud and cloud shadow detection. Firstly, conventional cloud detection algorithm CFMask is used to detect cloud and cloud shadow in Landsat images. Then, the results are used to replace the manually labeled images to train the deep convolutional neural network model for cloud detection. Finally, the model is used to detect the cloud and its shadow in new images. Experimental results show that the overall accuracy of the proposed method is 85.55%, which is better than that of CFMask and indicates that it is feasible to train the deep network model to detect cloud and cloud shadow without manually labeled data.

Key wordscloud and cloud shadow detection    Landsat8 image    convolutional neural network    semantic segmentation
收稿日期: 2020-04-01      出版日期: 2021-03-18
ZTFLH:  TP751.1  
基金资助:国家重点研发计划项目“长江中下游地区水稻主要气象灾害监测技术方法研究”(2017YFD0300402-3);国家自然科学基金项目“多时相遥感影像目标提取的时空模型与方法研究”共同资助(41571335)
通讯作者: 柴登峰
作者简介: 仇一帆(1995-),女,硕士研究生,主要研究方向为遥感图像处理算法研究。Email: rs_qyf@zju.edu.cn
引用本文:   
仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.
QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020090      或      https://www.gtzyyg.com/CN/Y2021/V33/I1/102
位信息 含义 位信息 含义
0 填充 8 云阴影置信度
1 地形遮蔽 9 雪/冰置信度
2 辐射饱和 10 雪/冰置信度
3 辐射饱和 11 卷云置信度
4 12 卷云置信度
5 云置信度 13
6 云置信度 14
7 云阴影置信度 15
Tab.1  Landsat8 Collection 1 Level 1 QA波段bit位描述
样本集 训练样本集 验证样本集 测试样本集
子景总量 6 396 1 575 3 966
切割图像总量 70 356 17 325 43 626
按生物群落子景数量统计 荒地 996 244 242
森林 610 150 749
灌木地 509 125 871
草地/农田 799 198 485
雪/冰 680 168 618
城市 898 221 378
湿地 803 196 499
水域 1 101 273 124
Tab.2  样本集子景数量和切割图像数量
Fig.1  实验方案技术流程
Fig.2  基于SegNet的网络结构
Tab.3  云和云阴影检测结果
指标 类别 本文方法 CFMask
F1分数 78.14 77.39
云阴影 43.86 41.84
无云 90.62 89.87
总体精度 85.55 84.27
Tab.4  测试样本集检测结果评价
[1] Foga S, Scaramuzza P L, Guo S, et al. Cloud detection algorithm comparison and validation for operational Landsat data products[J]. Remote Sensing of Environment, 2017,194:379-390.
doi: 10.1016/j.rse.2017.03.026
[2] Ju J, Roy D P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally[J]. Remote Sensing of Environment. 2008,112(3):1196-1211.
doi: 10.1016/j.rse.2007.08.011
[3] Rossow W B, Schiffer R A. Advances in understanding clouds from ISCCP[J]. Bulletin of the American Meteorological Society, 1999,80(11):2261-2287.
doi: 10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2
[4] Fisher A. Cloud and cloud-shadow detection in SPOT5 HRG imagery with automated morphological feature extraction[J]. Remote Sensing, 2014,6(1):776-800.
doi: 10.3390/rs6010776
[5] Zhu Z, Woodcock C E. Automated cloud,cloud shadow,and snow detection in multitemporal Landsat data:An algorithm designed specifically for monitoring land cover change[J]. Remote Sensing of Environment, 2014,152:217-234.
doi: 10.1016/j.rse.2014.06.012
[6] Zhu Z, Woodcock C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012,118:83-94.
doi: 10.1016/j.rse.2011.10.028
[7] Zhu Z, Wang S, Woodcock C E. Improvement and expansion of the Fmask algorithm:Cloud,cloud shadow,and snow detection for Landsats 4,7,8,and Sentinel 2 images[J]. Remote Sensing of Environment, 2015,159:269-277.
doi: 10.1016/j.rse.2014.12.014
[8] Irish R R, Barker J L, Goward S N, et al. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(10):1179-1188.
doi: 10.14358/PERS.72.10.1179
[9] Hagolle O, Huc M, Pascual D V, et al. A multi-temporal method for cloud detection, applied to FORMOSAT-2,VENμS,Landsat and Sentinel-2 images[J]. Remote Sensing of Environment, 2010,114(8):1747-1755.
doi: 10.1016/j.rse.2010.03.002
[10] Molnar G, Coakley J A. Retrieval of cloud covee fromsatelltte imagery data-a statistical approach[J]. Journal of Geophysical Research-Atomspheres, 1985,90(D7):2960-2970.
[11] Ricciardelli E, Romano F, Cuomo V. Physical and statistical approaches for cloud identification using meteosat second generation-spinning enhanced visible and infrared imager data[J]. Remote Sensing of Environment, 2008,112(6):2741-2760.
[12] Amato U, Antoniadis A, Cuomo V, et al. Statistical cloud detection from SEVIRI multispectral images[J]. Remote Sensing of Environment, 2008,112(3):750-766.
[13] Zi Y, Xie F, Jiang Z. A cloud detection method for Landsat8 images based on PCANet[J]. Remote Sensing, 2018,10(6):877.
[14] Xie F, Shi M, Shi Z, et al. Multilevel cloud detection in remote sensing images based on deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(8):3631-3640.
[15] Chai D, Newsam S, Zhang H K, et al. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks[J]. Remote Sensing of Environment, 2019,225:307-316.
[16] Zhou Z. A brief introduction to weakly supervised learning[J]. National Science Review, 2018,5(1):44-53.
[17] Deselaers T, Alexe B, Ferrari V. Weakly supervised localization and learning with generic knowledge[J]. International Journal of Computer Vision, 2012,100(3):275-293.
[18] U.S.Geological Survey. L8 biome cloud validation masks[DB/OL].[2020-04-01]. http://dx.doi.org/10.5066/F79Z930Q.
[19] U.S.Geological Survey. Landsat collection 1 level-1 quality assessment band[EB/OL].[2020-04-01].https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1-level-1-quality-assessment-band.
[20] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(12):2481-2495.
pmid: 28060704
[21] Ruder S.An overview of gradient descent optimization algorithms[EB/OL]. (2017-06-15)[2020-04-01] https://arxiv.org/abs/1609.04747.
[22] Kingma D P, Ba J. Adam:A method for stochastic optimization[EB/OL]. (2017-01-30)[2020-04-01] https://arxiv.org/abs/1412.6980.
[1] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[2] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[3] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[4] 孙盛, 蒙芝敏, 胡忠文, 余旭. 多尺度轻量化CNN在SAR图像地物分类中的应用[J]. 自然资源遥感, 2023, 35(1): 27-34.
[5] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[6] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[7] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[8] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[9] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[10] 杨昭颖, 韩灵怡, 郑向向, 李文吉, 冯磊, 王轶, 杨永鹏. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2): 224-230.
[11] 孔爱玲, 张承明, 李峰, 韩颖娟, 孙焕英, 杜漫飞. 基于知识引导的遥感影像融合方法[J]. 自然资源遥感, 2022, 34(2): 47-55.
[12] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
[13] 廖廓, 聂磊, 杨泽宇, 张红艳, 王艳杰, 彭继达, 党皓飞, 冷伟. 基于多维卷积神经网络的多源高分辨率卫星影像茶园分类[J]. 自然资源遥感, 2022, 34(2): 152-161.
[14] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[15] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发