Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (1): 205-213    DOI: 10.6046/gtzyyg.2020107
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
张家口明长城景观廊道Sentinel-1影像SBAS形变监测示范研究
何海英1,2(), 陈彩芬3(), 陈富龙1, 唐攀攀1
1.中国科学院空天信息创新研究院,北京 100094
2.中国科学院大学,北京 101408
3.北京聚才振邦企业管理顾问有限公司,北京 100038
Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach
HE Haiying1,2(), CHEN Caifen3(), CHEN Fulong1, TANG Panpan1
1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2. University of Chinese Academy of Sciences, Beijing 101408, China
3. Beijing Jucai Zhenbang Enterprise Management Consultant Co., Ltd., Beijing 100038, China
全文: PDF(9096 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

裸露于地表的张家口明长城遗产易受地表形变影响,使得长城沿线景观廊道整体性保护颇具挑战。为了弥补长城大型线性遗产系统形变监测的方法与实践空白,本研究选用SBAS-InSAR方法进行前沿示范。在干涉处理中,为降低大气延迟对干涉图的影响,研究引入GACOS(generic atmospheric correction online service for InSAR)气象数据进行大气校正; 同时试验区地势复杂,研究综合采用40 m Gauss与Goldstein滤波器以降低自然场景噪声相位。实验选取2017年5月—2018年7月升轨33景、降轨34景的Sentinel-1影像进行SBAS-InSAR处理,获取雷达视线向(line of sight,LOS)形变信息并经投影变换获取垂直向形变速率场。为验证结果可靠性,研究分别选择长城景观廊道典型山地区、平地区的升降轨沉降速率场作剖线交叉互检,得到两者数据的均方根误差最大值和平均值分别为9.3 mm/a和4.0 mm/a。考虑显著性水平,以10 mm/a为阈值,结果表明总长度85.1 km的张家口明长城景观廊道中79.5%占比的景观廊道相对稳定,形变速率处于-10~10 mm/a之间; 而剩余20.5%占比的景观廊道则存在显著形变,最大沉降速率为-64.5 mm/a。示范研究揭示了SBAS-InSAR在大型线性遗产宏观形变监测和评估的应用潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何海英
陈彩芬
陈富龙
唐攀攀
关键词 长城SBAS-InSAR升降轨大气校正    
Abstract

The cultural landscape of the Zhangjiakou Ming Great Wall is susceptible to surface deformation, making the systematic conservation of cultural landscape in this corridor quite challenging. In order to fix the methodology and application gaps of Great Wall monitoring (large-scale linear heritage) systematically, the authors applied the SBAS-InSAR technology to the time-series deformation surveillance in this pilot case study. In the procedures of InSAR data processing, an external weather model (GACOS) was firstly used to reduce the atmospheric artifacts on interferograms; moreover, a 40 m Gauss and the Goldstein filters were sequentially applied for the phase noise suppression relevant to the natural landscape. In total 67 Sentinel-1 SAR images including 33 ascending and 34 descending data acquired from May 2017 to July 2018 were collected for the line of sight (LOS) deformation calculation using the SBAS-InSAR approach. The derived deformation rates were then projected onto vertical direction for the further analysis. Afterwards, motion rate profiles of ascending and descending datasets from a typical mountain and a flat area were selected for cross-validation, resulting in the maximum and averaged root mean square errors of 9.3 mm/a and 4.0 mm/a, respectively. With considering the significance level, the result demonstrates that 79.5% of the Great Wall corridor (85.1 km totally observed) is relatively stable (with deformation rates in the range of -10 mm/a to 10 mm/a) while remaining 20.5 % shows significant motions (the maximum subsidence rate up to -64.5 mm/a) using the 10 mm/a as the threshold. This pilot study implied the applicability of the applied SBAS-InSAR approach to the synoptic deformation monitoring of large-scale linear heritage sites.

Key wordsthe Great Wall    SBAS-InSAR    ascending and descending    atmospheric correction
收稿日期: 2020-04-17      出版日期: 2021-03-18
ZTFLH:  TP79  
基金资助:国家重点研发计划政府间国际科技创新合作重点专项“星载雷达干涉非侵入式文化遗产脆弱性监测与评估”(2017YFE0134400);国家自然科学基金项目“面向文化遗产异常形变监测与评估的双尺度星载雷达干涉方法研究”(编号: 41771489)共同资助
通讯作者: 陈彩芬
作者简介: 何海英(1995-),女,硕士,研究方向为雷达遥感。Email: hehy@radi.ac.cn
引用本文:   
何海英, 陈彩芬, 陈富龙, 唐攀攀. 张家口明长城景观廊道Sentinel-1影像SBAS形变监测示范研究[J]. 国土资源遥感, 2021, 33(1): 205-213.
HE Haiying, CHEN Caifen, CHEN Fulong, TANG Panpan. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020107      或      https://www.gtzyyg.com/CN/Y2021/V33/I1/205
Fig.1  实验区范围示意图
卫星 轨道方向 开始获取日期 截止获取日期 极化方式 数量
S1A A 20170519 20180728 VV 33
S1B D 20170520 20180729 VV 34
Tab.1  Sentinel-1影像数据参数
Fig.2  Sentinel-1升降轨干涉数据的时空基线分布
Fig.3  升降轨长城廊道垂直形变场
Fig.4  邻近长城廊道的重点区域升降轨垂直形变场
Fig.5  外业实地核查照片
Fig.6  升降轨剖线Ⅰ,Ⅱ,Ⅲ和Ⅳ垂直形变交叉验证
剖线Ⅰ 剖线Ⅱ 剖线Ⅲ 剖线Ⅳ
升轨沉降速率 降轨沉降速率 升轨沉降速率 降轨沉降速率 升轨沉降速率 降轨沉降速率 升轨沉降速率 降轨沉降速率
-26.386 500 -36.359 664 -2.954 666 -3.787 196 -4.295 417 -2.776 092 -3.029 664 -2.478 660
-23.221 746 -30.817 969 -4.743 141 -7.881 187 -2.506 129 -2.619 370 -2.880 021 -2.698 201
-22.714 194 -30.374 685 -7.372 725 -7.107 225 -1.507 744 -2.431 923 -2.151 036 -3.522 589
-23.615 474 -30.359 094 -8.140 943 -6.869 733 -0.311 431 -2.613 713 -1.978 628 -4.144 786
-23.543 893 -29.345 527 -8.627 688 -7.422 558 -0.717 868 -3.090 406 -1.748 386 -4.782 313
-23.374 061 -29.196 741 -8.467 884 -8.232 046 -2.652 864 -2.517 831 -0.431 528 -2.531 183
-21.171 342 -27.141 972 -7.597 846 -6.272 651 -2.673 597 -2.647 359 1.146 827 1.037 039
-20.007 305 -27.036 656 -5.700 915 -3.545 717 -4.462 548 -3.822 364 -0.518 566 -1.215 172
-20.511 334 -27.782 669 -1.000 416 -2.343 803 -5.443 761 -5.075 118 -1.651 547 -1.209 820
-19.954 611 -27.064 594 -1.160 462 -2.475 457 -3.300 535 -5.246 339 -3.534 750 -2.576 534
-15.568 379 -23.739 264 -3.159 606 -2.924 525 -0.432 296 -3.413 042 -3.683 268 -3.270 100
-10.927 718 -23.326 770 -6.981 864 -3.587 688 1.056 834 -1.087 861 -3.860 244 -2.825 739
-7.685 485 -24.305 581 -9.950 955 -5.713 572 1.378 777 1.485 126 -5.101 048 -3.416 404
-1.134 007 -19.275 776 -13.391 594 -7.084 895 -1.031 696 -0.010 015 -4.242 044 -3.341 172
-5.592 829 -19.692 338 -8.871 876 -5.414 864 -2.021 653 -1.197 983 -3.637 222 -1.908 386
-6.037 808 -19.051 580 -6.126 122 -1.374 303 -2.796 964 -2.629 911
-8.260 981 -11.274 084 -7.283 288 -0.174 217 -3.379 837 -3.441 530
-9.759 655 -7.831 146 -10.272 661 -3.401 144 -3.132 522 -3.763 355
-6.249 528 -7.195 139 -11.418 052 -7.455 137 -2.651 378 -4.778 665
-3.935 778 -6.614 104 -9.772 344 -5.020 131 -0.793 225 -6.553 204
-6.512 675 -4.355 627 -1.774 932 -2.209 514
-7.287 250 -4.826 895
-9.053 184 -4.979 769
-9.107 149 -4.379 564
-8.193 869 -5.001 902
剖线Ⅰ 剖线Ⅱ 剖线Ⅲ 剖线Ⅳ
升轨沉降速率 降轨沉降速率 升轨沉降速率 降轨沉降速率 升轨沉降速率 降轨沉降速率 升轨沉降速率 降轨沉降速率
-6.870 626 -4.661 846
-5.238 107 -5.061 211
-4.095 639 -7.598 280
-6.956 030 -9.836 517
-8.646 734 -9.555 167
Tab.2  升降轨沉降速率剖线测量值
指标 剖线Ⅰ 剖线Ⅱ 剖线Ⅲ 剖线Ⅳ
均方根误差
最大偏离度
9.3
18.1
3.4
7.1
1.9
5.8
1.4
3.0
Tab.3  升降轨沉降速率剖线交叉对比测度
Fig.7  长城廊道地表形变稳定性专题分类
[1] 王晓轩. 张家口——中国历代长城博物馆(中国城市·张家口专版(二))[EB/OL].(2006-09-19)[2018-11-18]. http://paper.people.com.cn/rmrbhwb/html/200609/19/content_11299006.html.
Wang X X. Zhangjiakou-Great Wall Museum of Chinese History (China City·Zhangjiakou Special Edition(2))[EB/OL].(2006-09-19)[2018-11-18]. http://paper.people.com.cn/rmrbhwb/html/200609/19/content_11299006.html.
[2] Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas-differential Radar interferometry[J]. Journal of Geophysical Research Solid Earth, 1989,94(B7):9183-9191.
[3] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017,46(10):1717-1733.
Zhu J J, Li Z W, Hu J. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1717-1733.
[4] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,40(11):2375-2383.
[5] Usai S. A least squares database approach for SAR interferometric data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(4):753-760.
[6] 许文斌, 李志伟, 丁晓利, 等. 利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数[J]. 地球物理学报, 2012,55(2):452-461.
Xu W B, Li Z W, Ding X L, et al. Application of small baseline subsets D-InSAR technology to estimate the time series land deformation and aquifer storage coefficients of Los Angeles area[J]. Chinese Journal of Geophysics, 2012,55(2):452-461.
[7] 张永红, 吴宏安, 康永辉. 京津冀地区1992—2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 2016,45(9):1050-1058.
Zhang Y H, Wu H A, Kang Y H. Ground subsidence over Beijing-Tianjin-Hebei region during three periods of 1992 to 2014 monitored by interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(9):1050-1058.
[8] 周吕, 郭际明, 李昕, 等. 基于SBAS-InSAR的北京地区地表沉降监测与分析[J]. 大地测量与地球动力学, 2016,36(9):793-797.
Zhou L, Guo J M, Li X, et al. Monitoring and analyzing on ground settlement in Beijing area based on SBAS-InSAR[J]. Journal of Geodesy and Geodynamics, 2016,36(9):793-797.
[9] 孙晓鹏, 鲁小丫, 文学虎, 等. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016,28(3):123-129.doi: 10.6046/gtzyyg.2016.03.20.
Sun X P, Lu X Y, Wen X H, et al. Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR[J]. Remote Sensing for Land and Resources, 2016,28(3):123-129.doi: 10.6046/gtzyyg.2016.03.20.
[10] 吴文豪. 哨兵雷达卫星TOPS模式干涉处理研究[D]. 武汉:武汉大学, 2016.
Wu W H. TOPS interferometry with Sentinel-1[D]. Wuhan:Wuhan University, 2016.
[11] 陈富龙, 林珲, 程世来. 星载雷达干涉测量及时间序列分析的原理、方法与应用[M]. 北京: 科学出版社, 2013: 41-68.
Chen F L, Lin H, Cheng S L. Principles,methods and applications of spaceborne Radar interferometry and time series analysis[M]. Beijing: Science Press, 2013: 41-68.
[12] 胡俊. 基于现代测量平差的InSAR三维形变估计理论与方法[D]. 长沙:中南大学, 2013.
Hu J. Theory and method of estimating three-dimensional displacement with InSAR based on the modern surveying adjustment[D]. Changsha:Central South University, 2013.
[13] Fialko Y, Simons M, Agnew D. The complete (3-D) surface displacement field in the epicentral area of the 1999 MW7.1 Hector Mine Earthquake,California,from space geodetic observations[J]. Geophysical Research Letters, 2001,28(16):3063-3066.
[14] Hu J, Li Z W, Zhu J J, et al. Inferring three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits[J]. Science in China Series D(Earth Sciences), 2010,53(4):550-560.
[15] 张晓博. 基于高分辨率SAR影像的城市二维时序形变建模与应用[D]. 北京:中国矿业大学(北京), 2018.
Zhang X B. Modeling and application of the 2D time series deformation monitoring in urban area using high resolution SAR images[D]. Beijing:China University of Mining and Technology(Beijing), 2018.
[16] 崔喜爱, 曾琪明, 童庆禧, 等. 重轨星载InSAR测量中的大气校正方法综述[J]. 遥感技术与应用, 2014,29(1):9-17.
Cui X A, Zeng Q M, Tong Q X, et al. Overview of the atmospheric correction methods in repeat-pass InSAR measurements[J]. Remote Sensing Technology and Application, 2014,29(1):9-17.
[17] 孙建霖, 杨忠杰, 马金辉. 基于大气数据的时序InSAR大气延迟误差校正方法比较[J]. 科技创新与应用, 2019(11):23-26,30.
Sun J L, Yang Z J, Ma J H. Comparison of correction methods of time series InSAR atmospheric delay error based on atmospheric data[J]. Technology Innovation and Application, 2019(11):23-26,30
[18] Yu C, Penna N T, Li Z. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research(Atmospheres), 2017,122(3):2008-2025.
[19] Yu C, Li Z, Penna N T. Interferometric synthetic aperture Radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2017,204:109-121.
doi: 10.1016/j.rse.2017.10.038
[20] 王琴, 陈蜜, 刘书军, 等. 利用升降轨道SAR数据获取DEM的试验研究[J]. 测绘通报, 2015(6):39-43.
doi: 10.13474/j.cnki.11-2246.2015.0174
Wang Q, Chen M, Liu S J, et al. DEM acquisition study using raise-orbit and lower-orbit SAR data[J]. Bulletin of Surveying and Mapping, 2015(6):39-43.
[1] 刘辉, 徐心月, 陈蜜, 陈富龙, 丁瑞力, 刘菲. 秦皇岛段明长城时序InSAR遥感动态监测[J]. 自然资源遥感, 2023, 35(2): 202-211.
[2] 潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
[3] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[4] 孔卓, 杨海涛, 郑逢杰, 李扬, 齐济, 朱沁雨, 杨忠霖. 高光谱遥感图像大气校正研究进展[J]. 自然资源遥感, 2022, 34(4): 1-10.
[5] 罗雪玮, 向喜琼, 吕亚东. 龙里某塌陷时序InSAR变形监测的PS修正[J]. 自然资源遥感, 2022, 34(3): 82-87.
[6] 徐子兴, 季民, 张过, 陈振炜. 基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J]. 自然资源遥感, 2022, 34(2): 20-29.
[7] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[8] 申振宇, 高小红, 汤敏. 高海拔复杂地形区SPOT6图像大气校正方法对比及精度验证[J]. 国土资源遥感, 2020, 32(1): 81-89.
[9] 程东亚, 李旭东. 大气校正前后山地流域NDVI变化特征对比[J]. 国土资源遥感, 2020, 32(1): 90-97.
[10] 陈玲, 陈理, 李伟, 刘建宇. 基于FLAASH模型的Worldview3大气校正[J]. 国土资源遥感, 2019, 31(4): 26-31.
[11] 杨斌, 李丹, 高桂胜, 陈财, 王磊. Sentinel-2A卫星数据处理分析及在干旱河谷提取中的应用[J]. 国土资源遥感, 2018, 30(3): 128-135.
[12] 孙晓鹏, 鲁小丫, 文学虎, 甄艳, 王蕾. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3): 123-129.
[13] 孔金玲, 杨晶, 孙晓明, 杨姝, 柳富田, 杜东. 多光谱遥感影像大气校正与悬沙浓度反演——以曹妃甸近岸海域为例[J]. 国土资源遥感, 2016, 28(3): 130-137.
[14] 张月, 肖彧, 常晶晶, 刘健, 王亚琼, 贺春燕, 何冰. 大气校正对基于遥感指数提取藻华信息的影响[J]. 国土资源遥感, 2015, 27(3): 7-12.
[15] 佃袁勇, 方圣辉, 徐永荣. 一种协同反演气溶胶与水汽含量的高光谱图像大气校正算法[J]. 国土资源遥感, 2015, 27(2): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发