Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (1): 231-239    DOI: 10.6046/gtzyyg.2020122
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
蒙古高原土壤湿度时空变化格局及其对气候变化的响应
王佳新1,3(), 萨楚拉1,3(), 毛克彪2, 孟凡浩1,3, 罗敏1,3, 王牧兰1,3
1.内蒙古师范大学地理科学学院,呼和浩特 010022
2.中国农业科学院农业资源与农业区划研究所,北京 100081
3.内蒙古自治区遥感与地理信息系统重点实验室,呼和浩特 010022
Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change
WANG Jiaxin1,3(), SA Chula1,3(), MAO Kebiao2, MENG Fanhao1,3, LUO Min1,3, WANG Mulan1,3
1. School of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
2. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
3. Key Laboratory of Remote Sensing and Geographic Information System, Inner Mongolia Autonomous Region, Hohhot 010022, China
全文: PDF(4445 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

土壤水作为一种重要的水资源,其时空分布和动态变化对植被的分布和生长状况具有显著影响。蒙古高原是典型的干旱-半干旱气候区,也是亚欧大陆温带草原的主要构成部分,气候变化导致的土壤含水量变化无疑会对草原生态系统健康及稳定产生直接影响; 厘清蒙古高原土壤湿度时空特征及其对气候变化的响应有助于为生态保护相关政策的制定提供科学支撑。本研究基于GLDAS-Noah土壤湿度数据,运用线性回归分析、相关分析和Mann-Kendall(M-K)检验等方法,分析1982—2018年不同深度土壤湿度的时空格局、变化趋势及突变性等特征,并与CRU温度、降水数据相结合探讨土壤湿度对气象因子变化的响应。结果表明: ①蒙古高原年均土壤湿度总体呈“东北高西南低”的空间分布格局,且有明显的高值区、过渡带和低值区; ②近37 a来,蒙古高原0~10 cm(SM1)土壤湿度整体呈现不显著上升趋势,变化速率为0.002 m3/m3/10 a,M-K结果显示在2012年前后发生突变; 10~40 cm(SM2)土壤湿度的下降趋势较显著,变化速率为-0.005 m3/m3/10 a,其突变发生在1996年左右; ③基于像元尺度的相关性分析表明不同季节土壤湿度整体上与降水呈显著正相关关系,与温度呈显著负相关关系。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王佳新
萨楚拉
毛克彪
孟凡浩
罗敏
王牧兰
关键词 蒙古高原土壤湿度气候变化GLDAS    
Abstract

As an important water resource, soil water has a significant impact on the distribution and growth of vegetation by its temporal and spatial distribution and dynamic changes. The Mongolian Plateau is a typical arid-semi-arid climate zone, and it is also a major component of the temperate grasslands of the Eurasian continent. Changes in soil water content caused by climate change will undoubtedly have a direct impact on the health and stability of the grassland ecosystem. Clarifying the soil moisture of the Mongolian Plateau as well as the temporal and spatial characteristics and their response to climate change helps provide scientific support for the formulation of ecological protection related policies. Based on GLDAS-Noah soil moisture data, the authors used linear regression analysis, correlation analysis, and Mann-Kendall (MK) test methods to analyze the temporal and spatial patterns, changing trends, and mutation characteristics of soil moisture at different depths from 1982 to 2018. Combined with CRU temperature and precipitation data, the authors explored the response of soil moisture to changes in meteorological factors. The results are as follows: ① The annual average soil moisture of the Mongolian Plateau is generally in a spatial distribution pattern of “high in the northeast and low in the southwest”, and there are obvious high-value areas, transitional zones and low-value areas. ② In the past 37 years, the soil moisture of 0~10 cm (SM1) in the Mongolian Plateau has shown an insignificant upward trend, with a rate of change of 0.002 m 3/m3/10 a. The results of MK showed that a sudden change occurred around 2012; soil moisture of 10~40 cm (SM2), the downward trend was more significant, the rate of change was -0.005 m3/m3/10 a, and its sudden change occurred around 1996. ③ The correlation analysis based on the pixel scale shows that the soil moisture in different seasons has a significant positive correlation with precipitation on the whole, and has a significant negative correlation with temperature.

Key wordsMongolian Plateau    soil moisture    climate change    GLDAS
收稿日期: 2020-04-23      出版日期: 2021-03-18
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于多源遥感数据的蒙古高原积雪监测及草地植被生长影像机制研究”(41861014);中国农业科学院草原研究所科技创新工程草原非生物灾害防灾减灾团队(CAAS-ASTIP-2016-IGR-04);内蒙古科技计划项目共同资助(201702116)
通讯作者: 萨楚拉
作者简介: 王佳新(1995-),女,硕士研究生,主要从事遥感与地理信息系统应用研究。Email: 2930361488@qq.com
引用本文:   
王佳新, 萨楚拉, 毛克彪, 孟凡浩, 罗敏, 王牧兰. 蒙古高原土壤湿度时空变化格局及其对气候变化的响应[J]. 国土资源遥感, 2021, 33(1): 231-239.
WANG Jiaxin, SA Chula, MAO Kebiao, MENG Fanhao, LUO Min, WANG Mulan. Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change. Remote Sensing for Land & Resources, 2021, 33(1): 231-239.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020122      或      https://www.gtzyyg.com/CN/Y2021/V33/I1/231
Fig.1  蒙古高原高程及土地覆盖类型图
Fig.2  GLDAS土壤湿度数据与观测站点土壤湿度数据精度验证
Fig.3  1982—2018年蒙古高原土壤湿度的年际变化
Fig.4  1982—2018蒙古高原年平均土壤湿度变化趋势显著性检验
Fig.5  1982—2018蒙古原高多年平均土壤湿度的空间分布及年际变化
Fig.6  蒙古原高年平均温度、降水量距平变化
相关性 分布范围
R
SM1 SM2
显著负相关 -0.8~-0.5 1.1 1.5
低度负相关 -0.5~-0.3 1.1 18.1 0.07 20.8
负弱相关 -0.3~0 0.4 0.2 0.2 31.2 65.1 0.7 8.3 58.8
正弱相关 0~0.3 13.1 6.5 9.1 51.2 15.5 8.7 27.6 18.7
低度正相关 0.3~0.5 28.7 18.6 28.2 13.9 0.2 20.3 35.1 0.1
显著正相关 0.5~0.8 57.6 60.0 61.6 2.6 60.5 28.7
高度正相关 0.8~1 0.2 14.7 0.9 9.9 0.02
Tab.1  不同季节各层土壤湿度与降水相关系数面积占比
Fig.7  1982—2018年蒙古高原不同季节0~10 cm土壤湿度与降水量(P)、温度(T)的相关性
相关性 分布范围
R
SM1 SM2
高度负相关 -1~-0.8 0.3 0.1
显著负相关 -0.8~-0.5 0.1 30.0 0.2 1.8 29.1
低度负相关 -0.5~-0.3 2.3 32.3 21.5 13.0 29.6 1.0 0.8
负弱相关 -0.3~0 33.1 29.6 55.6 64.7 45.3 23.3 67.2 15.6
正弱相关 0~0.3 54.3 7.0 42.5 13.1 29.2 12.6 30.1 78.3
低度正相关 0.3~0.5 10.2 0.8 1.9 0.5 9.0 4.0 1.7 5.3
显著正相关 0.5~0.8 0.1 1.7 1.3
Tab.2  不同季节各层土壤湿度与温度相关系数面积占比
Fig.8  不同层土壤湿度对降水量、温度响应滞后时间空间分布
[1] 郭维栋, 马柱国, 姚永红. 近50年中国北方土壤湿度的区域演变特征[J]. 地理学报, 2003(s1):83-90.
Guo W D, Ma Z G, Yao Y H. Regional evolution characteristics of soil moisture in northern China in the past 50 years[J]. Acta Geographica Sinica, 2003(s1):83-90.
[2] Hendersonsellers A, Yang Z L, Dickinson R E. The project for intercomparison of land-surface parameterization schemes[J]. Bulletin of the American Meteorological Society, 1995,74(4):489-503.
[3] Seneviratne S I, Corti T, Edouard L, et al. Investigating soil moisture-climate interactions in a changing climate:A review[J]. Earth-Science Reviews, 2010,99(3):125-161.
doi: 10.1016/j.earscirev.2010.02.004
[4] 包刚, 包玉海, 覃志豪, 等. 近10年蒙古高原植被覆盖变化及其对气候的季节响应[J]. 地理科学, 2013,33(5):613-621.
Bao G, Bao Y H, Qin Z H, et al. Vegetation cover change and its seasonal response to climate in the Mongolian plateau in recent 10 years[J]. Geographical Science, 2013,33(5):613-621.
[5] 胡云锋, 巴图娜存, 毕力格吉夫, 等. 乌兰巴托—锡林浩特样带草地植被特征与水热因子的关系[J]. 生态学报, 2015,35(10):3258-3266.
doi: 10.5846/stxb201308092051
Hu Y F, Batunacun, Biligejifu, et al. Relationship between grassland vegetation characteristics and hydrothermal factors in Ulaanbaatar-Xilinhot transect[J]. Acta Ecologica Sinica, 2015,35(10):3258-3266.
[6] 王晓婷, 郭维栋, 钟中, 等. 中国东部土壤温度、湿度变化的长期趋势及其与气候背景的联系[J]. 地球科学进展, 2009,24(2):181-191.
Wang X T, Guo W D, Zhong Z, et al. Long-term trends of soil temperature and humidity changes in eastern China and their relationship with climate background[J]. Advance in Earth Science, 2009,24(2):181-191.
[7] 邓元红, 王世杰, 白晓永, 等. 西南地区土壤湿度与气候之间的互馈效应[J]. 生态学报, 2018,38(24):8688-8699.
doi: 10.5846/stxb201807301613
Deng Y H, Wang S J, Bai X Y, et al. Mutual feedback effects between soil moisture and climate in Southwest China[J]. Acta Ecologica Sinica, 2018,38(24):8688-8699.
[8] Bi H Y, Ma J W, Zheng W J, et al. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres, 2016,121(6):2658-2678.
doi: 10.1002/2015JD024131
[9] 王美林, 姜群鸥, 邵雅琪, 等. 基于TVDI的玛曲土壤湿度时空变化及其影响因素[J]. 中国水土保持科学, 2019,17(4):141-152.
Wang M L, Jiang Q O, Shao Y Q, et al. Temporal and spatial changes of soil moisture in Maqu based on TVDI and their influencing factors[J]. Science of Soil and Water Conservation, 2019,17(4):141-152.
[10] 范科科, 张强, 史培军, 等. 基于卫星遥感和再分析数据的青藏高原土壤湿度数据评估[J]. 地理学报, 2018,73(9):1778-1791.
doi: 10.11821/dlxb201809013
Fan K K, Zhang Q, Shi P J, et al. Evaluation of soil moisture data on the Qinghai-Tibet Plateau based on satellite remote sensing and reanalysis data[J]. Acta Geographica Sinica, 2018,73(9):1778-1791.
doi: 10.11821/dlxb201809013
[11] 张翀, 雷田旺, 宋佃星. 黄土高原植被覆盖与土壤湿度的时滞关联及时空特征分析[J]. 生态学报, 2018,38(6):2128-2138.
doi: 10.5846/stxb201703050361
Zhang C, Lei T W, Song D X. Time-dependent and spatial-temporal characteristics of vegetation cover and soil moisture on the Loess Plateau[J]. Acta Ecologica Sinica, 2018,38(6):2128-2138.
[12] 程善俊, 管晓丹, 黄建平, 等. 利用GLDAS资料分析黄土高原半干旱区土壤湿度对气候变化的响应[J]. 干旱气象, 2013,31(4):641-649.
Cheng S j, Guan X D, H J P, et al. Using GLDAS data to analyze the response of soil moisture to climate change in the semi-arid region of the Loess Plateau[J]. Journal of Arid Meteorology, 2013,31(4):641-649.
[13] 魏宝成, 玉山, 贾旭, 等. 基于AMSR-2蒙古高原土壤湿度反演及对气象因子响应分析[J]. 中国生态农业学报, 2016,24(6):837-845.
Wei B C, Yu S, Jia X, et al. Soil moisture retrieval and response to meteorological factors in the Mongolian Plateau based on AMSR-2[J]. Chinese Journal of Eco-Agriculture, 2016,24(6):837-845.
[14] 师春香, 谢正辉, 钱辉, 等. 基于卫星遥感资料的中国区域土壤湿度EnKF数据同化[J]. 中国科学:地球科学, 2011,41(3):375-385.
Shi C X, Xie Z H, Qian H, et al. Assimilation of EnKF data of regional soil moisture in China based on satellite remote sensing data[J]. Science in China:Earth Sciences, 2011,41(3):375-385.
[15] 刘丽伟, 魏栋, 王小巍, 等. 多种土壤湿度资料在中国地区的对比分析[J]. 干旱气象, 2019,37(1):40-47.
Liu L W, Wei D, Wang X W, et al. Comparative analysis of various soil moisture data in China[J]. Arid Meteorology, 2019,37(1):40-47.
[16] 秦福莹. 蒙古高原植被时空格局对气候变化的响应研究[D]. 呼和浩特:内蒙古大学, 2019.
Qin F Y. Study on the response of the temporal and spatial pattern of the vegetation on the Mongolian Plateau to climate change[D]. Hohhot:Inner Mongolia University, 2019.
[17] Rodell M, Houser P R, Jambor U, et al. The Global Land Data Assimilation System[J]. Bulletin of the American Meteorological Society, 2004,85(3):381-394.
doi: 10.1175/BAMS-85-3-381
[18] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007: 58-60.
Wei F Y. Statistical diagnosis and prediction technology of modern climate[M]. Beijing: Meteorological Press, 2007: 58-60.
[19] 索玉霞, 王正兴, 刘闯, 于伯华. 中亚地区1982年至2002年植被指数与温度和降水的相关性分析[J]. 资源科学, 2009,31(8):1422-1429.
Suo Y X, Wang Z X, Liu C, et al. Analysis of the correlation between vegetation index and temperature and precipitation in Central Asia from 1982 to 2002[J]. Resources Science, 2009,31(8):1422-1429.
[20] 宋海清, 李云鹏, 张静茹, 等. 内蒙古地区多种土壤湿度资料的初步评估[J]. 干旱区资源与环境, 2016,30(8):139-144.
Song H Q, Li Y P, Zhang J R, et al. Preliminary evaluation of various soil moisture data in Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2016,30(8):139-144.
[21] 丹丹. 蒙古高原近35年气候变化[D]. 呼和浩特:内蒙古师范大学, 2014.
Dan D. Climate change on the Mongolian Plateau in the past 35 years[D]. Hohhot:Inner Mongolia Normal University, 2014.
[22] 廖小荷, 何清, 金莉莉, 等. 塔克拉玛干沙漠腹地冬季积雪下垫面地表反照率及土壤温湿度变化特征[J]. 中国沙漠, 2018,38(2):393-400.
Liao X H, He Q, Jin L L, et al. Characteristics of surface albedo and soil temperature and humidity changes in the winter snow cover of the Taklimakan Desert hinterland[J]. China Desert, 2018,38(2):393-400.
[23] 那音太, 秦福莹, 贾根锁, 等. 近54a蒙古高原降水变化趋势及区域分异特征[J]. 干旱区地理, 2019,42(6):1253-1261.
Na Y T, Qin F Y, Jia G S, et al. Variation trend and regional differentiation of precipitation in the Mongolian Plateau in recent 54 years[J]. Arid Land Geography, 2019,42(6):1253-1261.
[24] Jin L Q, Zhang J Q, Wang R Y, et al. Analysis for spatio-temporal variation characteristics of droughts in different climatic regions of the Mongolian Plateau based on SPEI[J]. Sustainability, 2019,11(20):5767.
doi: 10.3390/su11205767
[25] Bao G, Qin Z H, Bao Y H, et al. NDVI-based long-term vegetation dynamics and its response to climatic change in the Mongolian Plateau[J]. Remote Sensing, 2014,6(9):8337-8358.
doi: 10.3390/rs6098337
[1] 郭艺, 甘甫平, 闫柏琨, 白娟, 邢乃琛, 刘琪. 1948—2021年河南省土壤含水量时空分布特征及其影响因素研究[J]. 自然资源遥感, 2023, 35(3): 241-252.
[2] 梁茜亚, 王卷乐, 李朋飞, DAVAADORJ Davaasuren. 基于GF-1影像的蒙古高原干旱半干旱地区自然道路提取——以蒙古国古尔班特斯苏木为例[J]. 自然资源遥感, 2023, 35(2): 122-131.
[3] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[4] 庞鑫, 刘珺. 气候变化对亚洲地区植被NDVI变化的影响[J]. 自然资源遥感, 2023, 35(2): 295-305.
[5] 张祯祺, 蔡惠文, 张平平, 王泽琳, 李婷婷. 基于GEE遥感云平台的三江源植被碳源/汇时空变化研究[J]. 自然资源遥感, 2023, 35(1): 231-242.
[6] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4): 258-264.
[7] 魏浩翰, 许仁杰, 杨强, 周权平. 多源卫星测高数据监测太湖水位变化及影响分析[J]. 自然资源遥感, 2021, 33(3): 130-137.
[8] 袁倩颖, 马彩虹, 文琦, 李学梅. 六盘山贫困区生长季植被覆盖变化及其对水热条件的响应[J]. 国土资源遥感, 2021, 33(2): 220-227.
[9] 潘梦, 曹云刚. 高亚洲地区冰湖遥感研究进展与展望[J]. 国土资源遥感, 2021, 33(1): 1-8.
[10] 罗红霞, 戴声佩, 李茂芬, 李玉萍, 郑倩, 胡盈盈. 海南岛植被覆盖变化驱动因子及相对作用评价[J]. 国土资源遥感, 2020, 32(1): 154-161.
[11] 孟庆林, 李明玉, 任春颖, 王宗明, 田艳林. 基于HSI模型的吉林省东部地区生境质量动态评价[J]. 国土资源遥感, 2019, 31(3): 140-147.
[12] 吴凯, 舒红, 聂磊, 焦振航. 基于Triple Collocation方法的土壤湿度误差分析[J]. 国土资源遥感, 2018, 30(3): 68-75.
[13] 张宇婷, 张振飞, 张志. 新疆大南湖荒漠区1992—2014年间植被覆盖度遥感研究[J]. 国土资源遥感, 2018, 30(1): 187-195.
[14] 郑朝菊, 曾源, 赵玉金, 赵旦, 吴炳方. 近15年中国西南地区植被覆盖度动态变化[J]. 国土资源遥感, 2017, 29(3): 128-136.
[15] 赵菲菲, 包妮沙, 吴立新, 孙瑞. 国产HJ-1B卫星数据的地表温度及湿度反演方法——以呼伦贝尔草原伊敏露天煤矿区为例[J]. 国土资源遥感, 2017, 29(3): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发