Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (1): 214-220    DOI: 10.6046/gtzyyg.2020178
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于TM影像的西伯利亚北方森林覆盖度近30 a空间变化研究
田雷1,2(), 傅文学1(), 孙燕武1, 荆林海1, 邱玉宝1, 李新武1
1.中国科学院空天信息创新研究院数字地球重点实验室,北京 100094
2.安徽理工大学空间信息与测绘工程学院,淮南 232001
Research on spatial change of the boreal forest cover in Siberia over the past 30 years based on TM images
TIAN Lei1,2(), FU Wenxue1(), SUN Yanwu1, JING Linhai1, QIU Yubao1, LI Xinwu1
1. Key Laboratory of Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2. School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China
全文: PDF(2702 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

在全球变暖的背景下,研究西伯利亚北方森林覆盖的长时间尺度空间变化特征不仅对全球气候变化研究和可持续发展有着重要意义,也为进一步研究北方森林变化对气候变化的响应提供支撑。以1985年和2015年2期Landsat TM/OLI为数据源,选取俄罗斯克拉斯诺亚尔斯克边疆区为西伯利亚北方森林典型研究区,采用决策树分类法得到研究区2期森林覆盖分类图,并采用高分二号(GF-2)影像随机选点验证,分类精度达到94.53%。对2期森林覆盖分类图在N51°~69° 纬度范围内以2° 为区间进行纬度分割并开展空间叠加分析,定量化分析每个纬度带内森林覆盖空间变化信息及其空间变化规律。结果表明: 近30 a来,西伯利亚北方森林变化显著,森林总体覆盖度由1985年的75.42%增加到2015年的80.53%,增加了5.11百分点。同时,不同纬度带林地面积变化率有较大的差异: N67°~69° 纬度带林地面积变化率最高,N63°~65° 纬度带次之,N57°~59° 纬度带最低。总体上看,森林覆盖度在各个纬度内都出现了不同程度的增加,在N63°~67° 纬度带内增加最显著; N57°~63° 纬度带森林覆盖度变化相对平稳; 而N51°~57° 纬度带内森林覆盖度增加量随着纬度的降低而降低。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田雷
傅文学
孙燕武
荆林海
邱玉宝
李新武
关键词 TM影像北方森林森林覆盖度西伯利亚空间变化    
Abstract

In the context of global warming, the study of the long-term spatial change characteristics of the boreal forest cover not only is important for global climate change and sustainable development research but also can provide the support for the further research on the response of the boreal forest changes to climate change. The data sources were Landsat TM/OLI images with 2 temporal series in summer season from 1985 and 2015, respectively. The Krasnoyarsk region in Russia was selected as the typical research area of the boreal forest in Siberia. The forest cover in 1985 and 2015 was classified based on the decision tree method and verification with random sample points of GF-2 satellite images, and the classification accuracy was 94.53%. The information of the dynamic spatial distribution of forest cover was quantified through latitude zones with 2° interval in the range of N51°~69° and the spatial overlay analysis for the dynamic forest cover maps of the two periods. The results show that, in the past 30 years, the boreal forest cover in Siberia changed significantly, and the overall forest cover changed from 75.42% in 1985 to 80.53% in 2015, increasing by 5.11 percentage points. Simultaneously, the changes of forest land area were different with each latitude zones: the highest change rate occurred in the latitude zone N65°~67°, followed by the latitude zone N67°~69° and the lowest was in N57°~59°. Overall, the forest cover increased in all latitude zones, the most significant increase was in N63°~67°; the change of forest cover was relatively stable in N57°~63° and the increase of forest cover decreased with the latitude zone in N51°~57°.

Key wordsTM images    boreal forest    forest coverage    Siberia    spatial change
收稿日期: 2020-06-17      出版日期: 2021-03-18
ZTFLH:  TP79  
基金资助:中国科学院战略先导科技专项项目(A类)子课题“国际三极科学数据共享网络”(XDA19070102);国家重点研发计划项目“综合自然和人类活动影响的土地利用变化遥感监测研究”共同资助(2017YFE0100800)
通讯作者: 傅文学
作者简介: 田 雷(1994-),男,硕士研究生,主要从事遥感图像处理与应用。Email: richard_dada@outlook.com
引用本文:   
田雷, 傅文学, 孙燕武, 荆林海, 邱玉宝, 李新武. 基于TM影像的西伯利亚北方森林覆盖度近30 a空间变化研究[J]. 国土资源遥感, 2021, 33(1): 214-220.
TIAN Lei, FU Wenxue, SUN Yanwu, JING Linhai, QIU Yubao, LI Xinwu. Research on spatial change of the boreal forest cover in Siberia over the past 30 years based on TM images. Remote Sensing for Land & Resources, 2021, 33(1): 214-220.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020178      或      https://www.gtzyyg.com/CN/Y2021/V33/I1/214
Fig.1  研究区地理位置示意图
Fig.2  TM/OLI影像预处理流程
Fig.3  TM/OLI影像决策树分类模型
Fig.4  1985年和2015年研究区森林覆盖
纬度 总面积/km2 1985年 2015年 1985—2015年
面积/km2 覆盖度/% 面积/km2 覆盖度/% 面积增加
量/km2
面积变
化率/%
覆盖度变
化百分点
N 67°~69° 19 596.45 5 838.93 29.80 6 731.24 34.35 892.31 15.28 4.55
N 65°~67° 58 813.18 32 255.77 54.84 40 192.99 68.34 7 937.23 24.61 13.50
N 63°~65° 58 364.09 40 083.99 68.68 45 243.34 77.52 5 159.35 12.87 8.84
N 61°~63° 66 364.15 55 911.37 84.25 56 952.28 85.82 1 040.92 1.86 1.57
N 59°~61° 130 507.24 106 668.66 81.73 110 896.36 84.97 4 227.70 3.96 3.24
N 57°~59° 155 232.73 139 694.20 89.99 141 250.67 90.99 1 556.47 1.11 1.00
N 55°~57° 114 456.67 79 057.51 69.07 88 167.88 77.03 9 110.38 11.52 7.96
N 53°~55° 77 579.58 53 261.04 68.65 58 131.19 74.93 4 870.15 9.14 6.28
N 51°~53° 33 564.27 26 059.58 77.64 27 744.80 82.66 1 685.21 6.47 5.02
总计 714 478.36 538 831.05 75.42 575 310.77 80.53 36 479.72 6.77 5.11
Tab.1  1985年和2015年森林覆盖信息统计
Fig.5  森林覆盖动态变化监测结果
[1] Edenhofer O, Madruga P R, Sokona Y, et al. Intergovernmental panel on climate change[C]// Climate change 2014:Mitigation of climate change.Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2014.
[2] Food and Agriculture Organization of the United Nations. Global forest resources assessment 2015:How are the world’s forests changing[M]. Rome:Food and Agriculture Organization of the United Nations, 2015.
[3] Corinne L Q, Andrew R M, Canadell J G, et al. Global carbon budget 2016[J]. Earth System Science Data, 2016,7(1):47-85.
[4] Grassi G, House J, Dentener F, et al. The key role of forests in meeting climate targets requires science for credible mitigation[J]. Nature Climate Change, 2017,7(3):220-226.
[5] Pan Y, Birdsey R A, Fang J. A large and persistent carbon sink in the world’s forests[J]. Science, 2011,333:988-993.
doi: 10.1126/science.1201609 pmid: 21764754
[6] 李剑泉, 李智勇, 易浩若. 森林与全球气候变化的关系[J]. 西北林学院学报, 2010,25(4):23-28.
Li J Q, Li Z Y, Yi H R. Interaetion relation between forestand global climate change[J]. Journal of Northwest Forestry University, 2010,25(4):23-28.
[7] Stocks B J, Lynham T J. Fire weather climatology in Canada and Russia[M]. Boston:Kluwer Academic Publishers, 1996.
[8] Larsen J A. The boreal ecosystem[M]. New York: Academic Press, 1980.
[9] 吴雪琼, 覃先林, 周汝良, 等. 森林覆盖变化遥感监测方法研究进展[J]. 林业资源管理, 2010(4):82-87.
Wu X Q, Qin X L, Zhou R L, et al. Progress of study on forest cover change detection by using remote sensing technique[J]. Forest Resources Management, 2010(4):82-87.
[10] 覃先林, 陈尔学, 李增元, 等. 基于MODIS数据的森林覆盖变化监测方法研究[J]. 遥感技术与应用, 2006,21(3):178-183.
Qin X L, Chen E X, Li Z Y, et al. Forest cover change monitoring using MODIS data[J]. Remote Sensing Technology and Application, 2006,21(3):178-183.
[11] 王荣, 江东, 韩惠, 等. 高分辨率遥感影像天然林与人工林植被覆盖信息提取[J]. 资源科学, 2013,35(4):868-874.
Wang R, Jiang D, Han H, et al. Extracting natural and artificial forest information based on high resolution remote sensing data[J]. Resources Science, 2013,35(4):868-874.
[12] Wilson E H, Sader S A. Detection of forest harvest type using multiple dates of Landsat TM imagery[J]. Remote Sensing of Environment, 2002,80(3):385-396.
[13] 任冲, 鞠洪波, 张怀清, 等. 天水市近30年林地动态变化遥感监测研究[J]. 林业科学研究, 2017,30(1):25-33.
Ren C, Ju H B, Zhang H Q, et al. Research on remote sensing monitoring technology of forest land dynamic change in Tianshui in recent 30 years[J]. Forest Research, 2017,30(1):25-33.
[14] 姜洋, 李艳. 浙江省森林信息提取及其变化的空间分布[J]. 生态学报, 2014,34(24):7261-7270.
Jiang Y, Li Y. The extraction of forest information and the spatial distribution of its change in Zhejiang Province[J]. Acta Ecologica Sinica, 2014,34(24):7261-7270.
[15] Serreze M C, Walsh J E, Chapin F S, et al. Observational evidence of recent change in the northern high-latitude environment[J]. Climatic Change, 2000,46(1-2):159-207.
[16] Stocker T F, Qin D, Plattner G K, et al. Climate change:The physical science basis[M]. Cambridge: Cambridge University Press, 2013.
[17] 李存军, 刘良云, 王纪华, 等. 基于Landsat影像自身特征的薄云自动探测与去除[J]. 浙江大学学报(工学版), 2006,40(1):10-13.
Li C J, Liu L Y, Wang J H, et al. Automatic detection and removal of thin haze based on own features of Landsat image[J]. Journal of Zhejiang University(Engineering Science), 2006,40(1):10-13.
[18] 李德仁, 王树良, 李德毅, 等. 论空间数据挖掘和知识发现的理论与方法[J]. 武汉大学学报(信息科学版), 2002,27(3):221-233.
Li D R, Wang S L, Li D Y, et al. Theories and technologies of spatial data mining and knowledge discovery[J]. Geomatics and Information Science of Wuhan University, 2002,27(3):221-223.
[19] 胡德勇, 邓磊, 林文鹏. 遥感图像处理原理和方法[M]. 北京: 测绘出版社, 2014.
Hu D Y, Deng L, Lin W P. Principle and methods of remote sensing image processing[M]. Beijing: Surveying and Mapping Publishing House, 2014.
[20] 刘淼, 胡远满, 布仁仓, 等. 基于RS和GIS的松潘县景观变化研究[J]. 辽宁工程技术大学学报, 2007,26(3):351-353.
Liu M, Hu Y M, Bu R C, et al. Study on landscape change based on RS and GIS in Songpan County[J]. Journal of Liaoning Technical University, 2007,26(3):351-353.
[21] Myneni R, Keeling C, Tucker C, et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997,386:698-702.
[22] Keeling C, Chin J, Whorf T. Increased activity of northern vegetation inferred from atmospheric CO2 measurements[J]. Nature, 1996,382(6587):146-149.
[23] 尹凌宇, 覃先林, 孙桂芬, 等. 利用KPCA法检测高分一号影像中的森林覆盖变化[J]. 国土资源遥感, 2018,30(1):95-101.doi: 10.6046/gtzyyg.2018.01.13.
Yi L Y, Qin X L, Sun G F, et al. The method for detecting forest cover change in GF-1 images by using KPCA[J]. Remote Sensing for Land and Resources, 2018,30(1):95-101.doi: 10.6046/gtzyyg.2018.01.13.
[1] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[2] 祁帅, 张永红, 汪慧琴. 林火干扰区全极化SAR影像的散射特性分析[J]. 国土资源遥感, 2016, 28(2): 48-53.
[3] 刘艳, 丁涛 , 阮惠华, 林娜. 基于多源遥感数据的玛纳斯河流域荒漠化监测[J]. 国土资源遥感, 2010, 22(1): 81-84.
[4] 郑荣宝, 庄剑顺, 张金前.  广州市土地利用与NDVI变化的关联分析[J]. 国土资源遥感, 2008, 20(2): 102-108.
[5] 黄岩, 谢世友, 赵亚萍. 基于ETM影像的喀斯特石漠化调查研究——以重庆南川市为例[J]. 国土资源遥感, 2008, 20(1): 55-58.
[6] 齐志新, 邓孺孺. 多暗像元大气校正方法[J]. 国土资源遥感, 2007, 19(2): 16-19.
[7] 高中灵, 汪小钦, 周小成.  火烧迹地信息遥感快速提取方法研究[J]. 国土资源遥感, 2005, 17(4): 38-41.
[8] 潘春梅, 丁谦, 曹文玉. 南沙群岛岛礁地形地貌TM影像特征分析[J]. 国土资源遥感, 2002, 14(2): 34-37,60.
[9] 程久苗. 长江芜湖港岸线资源的遥感调查研究[J]. 国土资源遥感, 1996, 8(3): 34-39.
[10] 张景发, 王四龙. 鲜水河活动断裂带TM图像中雪及其影响的抑制[J]. 国土资源遥感, 1995, 7(2): 58-63.
[11] 罗富生, 崔振奎, 徐双, 王国娟. 金矿床遥感影像模式及证据权重法在找矿预测中的应用[J]. 国土资源遥感, 1994, 6(4): 23-29,7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发