Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 93-99    DOI: 10.6046/gtzyyg.2020184
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于Faster R-CNN的火电厂冷却塔检测及工作状态判定
安健健1,2(), 孟庆岩2,3,4(), 胡蝶2,3, 胡新礼2,3, 杨健2,3, 杨天梁3,4
1.昆明理工大学国土资源工程学院,昆明 650093
2.中国科学院空天信息创新研究院,北京 100094
3.三亚中科院遥感研究所,三亚 572029
4.中国科学院空天信息研究院海南研究院,三亚 572029
The detection and determination of the working state of cooling tower in the thermal power plant based on Faster R-CNN
AN Jianjian1,2(), MENG Qingyan2,3,4(), HU Die2,3, HU Xinli2,3, YANG Jian2,3, YANG Tianliang3,4
1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
3. Sanya Institute of Remote Sensing, Sanya 572029, China
4. Hainan Research Institute, Aerospace Information Research Institute, Chinese Academy of Sciences, Sanya 572029, China
全文: PDF(8190 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对目前火力发电厂检测研究较少、识别难度大、工作状态监测少等问题,提出一种以冷却塔为关键地物目标的火电厂冷却塔检测方法,并根据冷却塔是否排气判定电厂工作状态。基于Faster R-CNN深度学习网络,通过设计对比实验,对冷却塔及其工作状态特征进行精确提取,并对检测及判定结果进行验证。实验结果表明,该模型在目标工作状态检测中,选取8个不同区域验证,均取得理想效果。由此可见,Faster R-CNN模型能准确检测电厂冷却塔,可有效判定火力发电厂工作状态并具有多区域适用性。此外,该方法也可迁移至城市内具有排气现象的其他大型工业地物目标工作状态判定中。研究成果可有效服务于城建部门对局域环境的监管,具有较大的应用潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安健健
孟庆岩
胡蝶
胡新礼
杨健
杨天梁
关键词 深度学习Faster R-CNN目标检测冷却塔工作状态    
Abstract

Pollutants from thermal power plants are discharged into the air, posing a great threat to urban ecological environments and resident health. However, currently, there is no effective method for power plant detection and working state determination. This paper proposes a thermal power plant cooling tower detection method with cooling towers as the key target and then further captures the production state information from water vapor discharge from the top of cooling towers based on the Faster R-CNN deep learning network. 8 typical thermal power plants are provided to verify the proposed method. The ideal results have been achieved in these test scenarios, which implies that this method can be effectively applied to the working state detection of thermal power plants. In addition, the applicability of this method can be broadened to similar industrial targets, such as steel mills and nuclear power plants. Creatively applying a deep learning network to determining the target working state is the authors' theoretical contribution that develops an innovative orientation, and this method could provide practical guidance for the governance of urban industrial gas emissions.

Key wordsdeep learning    Faster R-CNN    target detection    cooling tower    working state
收稿日期: 2020-06-22      出版日期: 2021-07-21
ZTFLH:  TP751P407.8  
基金资助:海南省重大科技计划项目“低纬度区域动态卫星研制与应用”(ZDKJ2017009);国家高分辨率对地观测重大科技专项项目“高分环境监测综合验证和应用示范”(05-Y30B01-9001-19/20-1);四川省科技计划项目“基于大数据机器学习与冠层反射率模型结合的水稻叶面积指数提取技术”(2018JZ0054)
通讯作者: 孟庆岩
作者简介: 安健健(1995-),男,硕士研究生,主要研究方向为遥感图像处理。Email: awckmust@163.com
引用本文:   
安健健, 孟庆岩, 胡蝶, 胡新礼, 杨健, 杨天梁. 基于Faster R-CNN的火电厂冷却塔检测及工作状态判定[J]. 国土资源遥感, 2021, 33(2): 93-99.
AN Jianjian, MENG Qingyan, HU Die, HU Xinli, YANG Jian, YANG Tianliang. The detection and determination of the working state of cooling tower in the thermal power plant based on Faster R-CNN. Remote Sensing for Land & Resources, 2021, 33(2): 93-99.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020184      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/93
Fig.1  冷却塔结构图
Fig.2  Faster R-CNN目标检测网络结构图
Fig.3  VGG16部分结构示意图
Fig.4  标注示例
Fig.5  数据增强
改变亮度 旋转 CutMix Mosaic mAP/%
88.10
90.83
89.76
93.30
93.69
94.88
Tab.1  不同数据增强技术实验结果
Fig.6  训练损失值变化
Fig.7  不同特征提取网络精确率—召回率曲线
Fig.8  不同特征提取网络的检测结果图
Fig.9  不同算法电厂检测结果图
模型 AP mAP
powerstation_w powerstation_nw
SSD 87.52 73.76 80.64
YOLOv3 93.20 94.38 93.79
Faster R-CNN(VGG16) 90.86 98.90 94.88
Tab.2  3种不同算法对比分析
Fig.10  电厂冷却塔检测结果图
[1] 黄劢. 火电发电厂在智能电网中的重要性[J]. 科技传播, 2016, 8(9):138,141.
Huang M. The importance of thermal power plant in Smart Grid[J]. Public Communication of Science Technology, 2016, 8(9):138,141.
[2] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]// European Conference on Computer Vision, 2014:818-833.
[3] Cai Z, Fan Q, Feris R S, et al. A unified multi-scale deep convolutional neural network for fast object detection[C]// European Conference on Computer Vision, 2016:354-370.
[4] Uijlings J, Sande K E, Gevers T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171.
doi: 10.1007/s11263-013-0620-5
[5] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Computer Vision and Pattern Recognition, 2014:580-587.
[6] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[C]// Neural Information Processing Systems, 2015:91-99.
[7] Lei W T, Hou F F, Xi J C, et al. Automatic hyperbola detection and fitting in GPR B-scan image[J]. Automation in Construction, 2019, 106:102839.
doi: 10.1016/j.autcon.2019.102839
[8] Zhong Z, Sun L, Huo Q, et al. Improved localization accuracy by LocNet for Faster R-CNN based text detection[C]// International Conference on Document Analysis and Recognition, 2017:923-928.
[9] Zhang Q, Wan C, Han W, et al. A modified faster region-based convolutional neural network approach for improved vehicle detection performance[J]. Multimedia Tools and Applications, 2019, 78(20):29431-29446.
doi: 10.1007/s11042-018-6769-8
[10] Zhong Z, Sun L, Huo Q, et al. An anchor-free region proposal network for Faster R-CNN-based text detection approaches[J]. International Journal on Document Analysis and Recognition, 2019, 22(3):315-327.
doi: 10.1007/s10032-019-00335-y
[11] Zou Z, Shi Z. Ship detection in spaceborne optical image with SVD networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):5832-5845.
doi: 10.1109/TGRS.2016.2572736
[12] Redmon J, Divvala S K, Girshick R, et al. You only look once:Unified,real-time object detection[C]// Computer Vision and Pattern Recognition, 2016:779-788.
[13] Krizhevsky A, Sutskever I, Hinton G E, et al. ImageNet classification with deep convolutional neural networks[C]// Neural Information Processing Systems, 2012:1097-1105.
[14] Shelhamer E, Long J, Darrell T, et al. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717
[15] Xu F, Liu J, Sun M, et al. A hierarchical maritime target detection method for optical remote sensing imagery[J]. Remote Sensing, 2017, 9(3):280.
doi: 10.3390/rs9030280
[16] Yao Y, Jiang Z, Zhang H. Oil tank detection based on salient region and geometric features[C]// Optoelectronic Imaging and Multimedia Technology III.International Society for Optics and Photonics, 2014, 9273:92731G.
[17] Zhang F, Du B, Zhang L, et al. Weakly supervised learning based on coupled convolutional neural networks for aircraft detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9):5553-5563.
doi: 10.1109/TGRS.2016.2569141
[18] Zhang L, Zhang Y, Zhang Z, et al. Real-time water surface object detection based on improved Faster R-CNN[J]. Sensors, 2019, 19(16):3523.
doi: 10.3390/s19163523
[19] Yao Y, Jiang Z, Zhang H, et al. Chimney and condensing tower detection based on faster R-CNN in high resolution remote sensing images[C]// International Geoscience and Remote Sensing Symposium, 2017:3329-3332.
[20] Girshick R. Fast R-CNN[C]// International Conference on Computer Vision, 2015:1440-1448.
[21] Cheng G, Han J, Lu X. Remote sensing image scene classification:Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10):1865-1883.
doi: 10.1109/JPROC.2017.2675998
[1] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[2] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[3] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[4] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[5] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[6] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[7] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[8] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[9] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[10] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
[11] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[12] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[13] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
[14] 伊尔潘·艾尼瓦尔, 买买提·沙吾提, 买合木提·巴拉提. 基于GF-2影像和Unet模型的棉花分布识别[J]. 自然资源遥感, 2022, 34(2): 242-250.
[15] 孙宇, 黄亮, 赵俊三, 常军, 陈朋弟, 成飞飞. 结合随机擦除和YOLOv4的高空间分辨率遥感影像桥梁自动检测[J]. 自然资源遥感, 2022, 34(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发