Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 192-201    DOI: 10.6046/gtzyyg.2020187
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
红崖山水库近20年面积变化遥感调查及驱动力分析
郝固状1,2(), 甘甫平3(), 闫柏琨3, 李贤庆1,2, 胡辉东1,2
1.中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京 100083
2.中国矿业大学(北京)地球科学与测绘工程学院,北京 100083
Remote sensing survey and driving force analysis of area change of Hongyashan Reservoir in the past twenty years
HAO Guzhuang1,2(), GAN Fuping3(), YAN Baikun3, LI Xianqing1,2, HU Huidong1,2
1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
2. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing 100083, China;
全文: PDF(7617 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

甘肃省红崖山水库位于水源缺乏的西北地区,是该地区生态系统的重要支撑,分析水库的面积变化便于当地政府统筹做好水生态保护修复,水资源合理利用,为其提供决策支持。通过对2000—2019年的Landsat系列数据和GF-2数据进行水域面积和植被覆盖度的提取分析,并结合周边气象数据和收集当地的资料综合分析水域面积变化的影响因素,探讨水域面积时空变化及驱动力。结果表明: 总体特征上,2000—2019年20 a红崖山水库的水域面积持续增长,总面积增加8.98 km2,面积变化率高达42.6%; 月际变化特征上,水域面积的变化呈现倒“正态分布”曲线趋势,丰水期主要集中在春秋季节的3月份和9—10月份,枯水期主要集中在夏季的6月份; 年际变化特征上,由于水域面积受季节影响较大,故分春夏秋冬四季进行年际分析,春冬季节水域面积持续上升,平均年际增长率为5.03%和5.22%,秋季平均年际增长率最低仅为2.42%,夏季水域面积平均年际增长率为22.19%,是变化幅度最大的季节,呈“V”形波动上升。根据气温、降水和蒸发量等气象数据以及植被覆盖度与水域面积的相关性分析,以及相关水文资料分析,得出以下结论: 直接驱动力是降水量的变化,工程扩建加高,入库径流变化; 间接驱动力包括气温变化,植被覆盖度的变化,工、农、生活用水,生态环境修复等。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝固状
甘甫平
闫柏琨
李贤庆
胡辉东
关键词 红崖山水库遥感调查水域面积驱动力    
Abstract

Hongyashan Reservoir is located in northwestern China where water resources are lacking. Reservoirs are an important support for the ecosystem in this region. Analyzing the changes in the area of the reservoir can effectively help Minqin County Government to make overall plans for water ecological protection and restoration as well as rational use of water resources and can also provide support for its decision-making. Through the extraction and analysis of the water area and vegetation coverage of the Landsat series data and GF-2 data from 2000 to 2019 and in combination with the surrounding meteorological data and the collection of local data, the authors comprehensively analyzed the influencing factors of the water area change and explored the spatial and temporal changes of the water area as well as the driving force. The results show that, on the whole, the water area of Hongyashan Reservoir has continued to increase in the past 20 years, the total area has increased by 8.98 km2, and the area change rate is as high as 42.6%, and that, in terms of monthly changes, the change in water area has an inverted “normal distribution” curve. The trend is that the wet season is mainly concentrated in March and September-October in the spring and autumn seasons, and the dry season is mainly concentrated in June in the summer. In terms of interannual variability, the water area is greatly affected by the seasons, so it is divided into spring, summer, autumn and winter. Interannual analysis shows that the water area in spring and winter continues to rise, with average annual growth rates of 5.03% and 5.22%, the lowest average annual growth rate in autumn is only 2.42%, and the average annual growth rate of summer water area is 22.19%, which is the season with the largest variation amplitude, exhibiting “V” fluctuation and rising. According to the meteorological data such as temperature, precipitation and evaporation, the correlation analysis of vegetation coverage and water area, and the analysis of related hydrological data, the following conclusions can be drawn: the direct driving forces are the change in precipitation, the increasing project expansion, and the change of runoff into the reservoir, whereas the indirect driving forces include changes in temperature, changes in vegetation coverage, the industrial, agricultural and domestic water use, and the restoration of the ecological environment.

Key wordsHongyashan Reservoir    remote sensing survey    water area    driving force
收稿日期: 2020-06-29      出版日期: 2021-07-21
ZTFLH:  TP79  
基金资助:国防科工局项目“高分国土资源遥感应用示范系统(二期)”(04-Y30B01-9001-18/20);自然资源部中国地质调查局项目“全国冰川及荒漠化遥感地质调查”(DD20190515)
通讯作者: 甘甫平
作者简介: 郝固状(1994-),男,硕士研究生,主要从事水文地质遥感应用研究。Email: haoguzhuang@126.com
引用本文:   
郝固状, 甘甫平, 闫柏琨, 李贤庆, 胡辉东. 红崖山水库近20年面积变化遥感调查及驱动力分析[J]. 国土资源遥感, 2021, 33(2): 192-201.
HAO Guzhuang, GAN Fuping, YAN Baikun, LI Xianqing, HU Huidong. Remote sensing survey and driving force analysis of area change of Hongyashan Reservoir in the past twenty years. Remote Sensing for Land & Resources, 2021, 33(2): 192-201.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020187      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/192
Fig.1  研究区地理位置
卫星/传感器 时间 分辨
率/m
影像
数量
重访周
期/d
Landsat5 TM 2000/03—2012/02 30 254 16
Landsat7 ETM+ 2012/03—2013/02 30 34 16
Landsat8 OLI 2013/03—2020/02 30 171 16
Tab.1  Landsat遥感影像数据
传感器 时间 分辨率/m 影像数量 重访周期/d
PAN/PMS 2015/04/10 1/4 6/6 5
2016/10/08
2016/12/21
2017/02/23
2017/11/21
2018/07/21
Tab.2  高分二号(GF-2)遥感影像数据
Fig.2  总体技术路线
Fig.3  Landsat影像4种水体指数提取效果对比
水体提取法 水库水域
面积/km2
绝对误
差/km2
相对误
差/%
目视解译法 20.707
MNDWI水体指数法 20.713 0.006 0.029
NDWI水体指数法 20.583 -0.124 -0.599
NWI水体指数法 20.550 -0.157 -0.758
EWI水体指数法 20.529 -0.178 -0.860
Tab.3  4种水体指数法与GF-2目视解译法水体面积提取精度对比
Fig.4  GF-2影像NDWI指数法提取水体
时间 GF-2数据 Landsat
数据
绝对误
差/km2
相对误差/%
2015/04 19.72 19.81 0.09 0.46
2016/10 21.27 20.71 -0.57 -2.66
2016/12 17.45 17.51 0.06 0.33
2017/02 20.89 20.73 -0.15 -0.72
2017/11 19.55 19.72 0.17 0.88
2018/07 13.30 12.42 -0.88 -6.63
Tab.4  GF-2/Landsat数据水域面积提取精度对比
Fig.5  GF-2/Landsat水域面积相关性
Fig.6  2000—2019年红崖山水库水域面积月际变化
Fig.7  2000—2019年红崖山水库月均水域面积
Fig.8  2000—2019年红崖山水库水域面积年际变化
Fig.9  红崖山水库年均水域面积变化
Fig.10  红崖山水库水域面积年际变化率
Fig.11  2000—2019年气温、降水量对水域面积变化的影响
Fig.12  植被覆盖度的年际变化
Fig.13  水域面积-植被覆盖度相关性
[1] 吴川, 张玉龙, 许秀贞, 等. 基于Landsat TM/ETM和HJ-1A/B影像的丹江口水库水域变化监测研究[J]. 长江流域资源与环境, 2013, 22(9):1207-1213.
Wu C, Zhang Y L, Xu X Z, et al. Research on water monitoring of Danjiangkou Reservoir based on Landsat TM/ETM and HJ-1A/B images[J]. Resources and Environment of the Yangtze River Basin, 2013, 22(9):1207-1213.
[2] 李均力, 胡汝骥, 黄勇, 等. 1964—2014年柴窝堡湖面积的时序变化及驱动因素[J]. 干旱区研究, 2015, 32(3):417-427.
Li J L, Hu R J, Huang Y, et al. The time-series changes and driving factors of the area of Chaiwopu Lake from 1964 to 2014[J]. Arid Zone Research, 2015, 32(3):417-427.
[3] 魏善蓉, 金晓媚, 王凯霖, 等. 基于遥感的柴达木盆地湖泊面积变化与气候响应分析[J]. 地学前缘, 2017, 24(5):427-433.
Wei S R, Jin X M, Wang K L, et al. Analysis of lake area changes and climate response in Qaidam Basin based on remote sensing[J]. Earth Science Frontiers, 2017, 24(5):427-433.
[4] 张文, 崔长露, 李林宜, 等. 基于长时间序列遥感数据的鄱阳湖水面面积监测分析[J]. 水文, 2019, 39(3):29-35,21.
Zhang W, Cui C L, Li L Y, et al. Monitoring and analysis of the water surface area of Poyang Lake based on long-term serial remote sensing data[J]. Hydrology, 2019, 39(3):29-35,21.
[5] 张兆鹏, 李增元, 田昕, 等. 1987—2016年红崖山水库面积时空变化分析[J]. 甘肃农业大学学报, 2018, 53(5):127-135.
Zhang Z P, Li Z Y, Tian X, et al. Analysis of the spatial and temporal changes of the area of Hongyashan Reservoir from 1987 to 2016[J]. Journal of Gansu Agricultural University, 2018, 53(5):127-135.
[6] 刘治国. 红崖山水库水环境变化趋势分析[J]. 甘肃农业, 2007(10):82.
Liu Z G. Analysis of water environment change trend of Hongyashan Reservoir[J]. Gansu Agriculture, 2007(10):82.
[7] 尹亚坤. 红崖山水库灌区水资源评价与承载能力研究[D]. 西安:西安理工大学, 2005.
Yin Y K. Research on water resources evaluation and carrying capacity of Hongyashan Reservoir Irrigation District[D]. Xi’an:Xi’an University of Technology, 2005.
[8] 徐丹蕾, 丁靖南, 伍永秋. 1989—2014年毛乌素沙地湖泊面积[J]. 中国沙漠, 2019, 39(6):40-47.
Xu D L, Ding J N, Wu Y Q. Lake area of Maowusu Sandy Land from 1989 to 2014[J]. Chinese Desert, 2019, 39(6):40-47.
[9] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
doi: 10.1080/01431169608948714
[10] Otsu N. A tlreshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1979, 9(1):62-66.
doi: 10.1109/TSMC.1979.4310076
[11] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005(5):589-595.
Xu H Q. Research on extracting water body information with improved normalized difference water body index (MNDWI)[J]. Journal of Remote Sensing, 2005(5):589-595.
[12] 丁凤. 基于新型水体指数(NWI)进行水体信息提取的实验研究[J]. 测绘科学, 2009, 34(4):155-157.
Ding F. Experimental research on water body information extraction based on the new water body index (NWI)[J]. Surveying and Mapping Science, 2009, 34(4):155-157.
[13] 闫霈, 张友静, 张元. 利用增强型水体指数(EWI)和GIS去噪音技术提取半干旱地区水系信息的研究[J]. 遥感信息, 2007(6):62-67.
Yan P, Zhang Y J, Zhang Y. Research on extracting water system information in semi-arid area by using enhanced water body index (EWI) and GIS denoising technology[J]. Remote Sensing Information, 2007(6):62-67.
[14] 郭永强, 王乃江, 褚晓升, 等. 基于Google Earth Engine分析黄土高原植被覆盖变化及原因[J]. 中国环境科学, 2019, 39(11):4804-4811.
Guo Y Q, Wang N J, Chu X S, et al. Analysis of changes and causes of vegetation coverage on the Loess Plateau based on Google Earth Engine[J]. Chinese Environmental Science, 2019, 39(11):4804-4811.
[15] Bakuła M, Pelc-Mieczkowska R, Walawski M. Reliable and redundant RTK positioning for applications in hard observational conditions[J]. Artificial Satellites, 2012, 47(1).23-33.
doi: 10.2478/v10018-012-011-0
[16] 裴杰, 牛铮, 王力, 等. 基于Google Earth Engine云平台的植被覆盖度变化长时间序列遥感监测[J]. 中国岩溶, 2018, 37(4):608-616.
Pei J, Niu Z, Wang L, et al. Long-term remote sensing monitoring of vegetation coverage changes based on Google Earth Engine cloud platform[J]. China Karst, 2018, 37(4):608-616.
[17] 李渊, 张芮, 石岩, 等. 干旱绿洲区水资源规划配置与生态环境修复——以石羊河流域民勤绿洲为例[J]. 水利规划与设计, 2019(1):6-8.
Li Y, Zhang R, Shi Y, et al. Water resources planning and ecological environment restoration in arid oasis areas——Taking the Minqin Oasis in the Shiyang River Basin as an example[J]. Water Resources Planning and Design, 2019(1):6-8.
[18] 李渊. 红崖山水库加高扩建工程土建施工实践[J]. 甘肃科技纵横, 2017, 46(10):49-51,12.
Li Y. Practice of civil construction of Hongyashan reservoir heightening and expansion project[J]. Gansu Science and Technology, 2017, 46(10):49-51,12.
[19] 彭祥荣, 赵明瑞. 民勤县青土湖生态变化调查分析[J]. 现代农业科技, 2019(16):167,170.
Peng X R, Zhao M R. Investigation and analysis of ecological changes of Qingtu Lake in Minqin County[J]. Modern Agricultural Science and Technology, 2019(16):167,170.
[20] 卢生霞. 红崖山水库加高扩建工程石羊河蔡旗断面来水分析计算[J]. 农业科技与信息, 2018(21):99-101.
Lu S X. Incoming water analysis and calculation of Cai section of Shiyang River at the heightening and expansion project of Hongyashan Reservoir[J]. Agricultural Science and Technology, 2018(21):99-101.
[21] 金彦兆, 孙栋元, 胡想全, 等. 石羊河流域红崖山水库站径流变化特征及应对措施[J]. 水利规划与设计, 2018(10):38-40,47.
Jin Y Z, Sun D Y, Hu X Q, et al. Runoff variation characteristics and countermeasures of Hongyashan Reservoir station in Shiyang River basin[J]. Water Resources Planning and Design, 2018(10):38-40,47.
[22] 汪志远. 红沙岗供水工程施测方法初探[J]. 经纬天地, 2018(4):59-61.
Wang Z Y. A Preliminary study on the surveying methods of Hongshagang water supply project[J]. Jingwei Tiandi, 2018(4):59-61.
[1] 李益敏, 杨舒婷, 吴博闻, 梁雨西, 孟月玥. 昆明市呈贡区不透水面时空变化及驱动力分析[J]. 自然资源遥感, 2022, 34(2): 136-143.
[2] 胡苏李扬, 李辉, 顾延生, 黄咸雨, 张志麒, 汪迎春. 基于高分辨率遥感影像的神农架大九湖湿地土地利用类型变化及其驱动力分析——来自长时间尺度多源遥感信息的约束[J]. 国土资源遥感, 2021, 33(1): 221-230.
[3] 赵玉灵. 粤港澳大湾区自然资源遥感调查与保护建议[J]. 国土资源遥感, 2018, 30(4): 139-147.
[4] 于冰, 王继燕, 苏勇, 肖东升, 刘福臻. 基于像元转换的土地覆盖变化监测方法——以北京市区县为例[J]. 国土资源遥感, 2018, 30(3): 60-67.
[5] 高慧, 张景华, 张建龙. 基于资源一号02C卫星的县域生态环境遥感调查——以普格县为例[J]. 国土资源遥感, 2017, 29(s1): 144-150.
[6] 赵玉灵. 广东省海岸线与红树林现状遥感调查与保护建议[J]. 国土资源遥感, 2017, 29(s1): 114-120.
[7] 张焜, 李晓民, 马世斌, 刘世英, 李生辉. GF-1图像在中印边境楚鲁松杰村地质灾害调查中的应用[J]. 国土资源遥感, 2016, 28(2): 139-148.
[8] 王瑞国. 基于WorldView-2数据的乌东煤矿地质灾害遥感调查及成因分析[J]. 国土资源遥感, 2016, 28(2): 132-138.
[9] 郭兆成, 童立强, 郑雄伟, 齐建伟, 王建超. 四川芦山地震次生地质灾害遥感调查及灾害特征初探[J]. 国土资源遥感, 2014, 26(3): 99-105.
[10] 栾卓然, 周智勇, 路丽, 张志科, 李彬, 于谦. 冀中平原区砖瓦粘土开采现状及生态环境遥感调查[J]. 国土资源遥感, 2013, 25(4): 143-146.
[11] 朱俊凤, 王耿明, 张金兰, 黄铁兰. 珠江三角洲海岸线遥感调查和近期演变分析[J]. 国土资源遥感, 2013, 25(3): 130-137.
[12] 毛雨景, 赵志芳, 吴文春, 王锋德. 云南省水蚀荒漠化遥感调查及成因分析[J]. 国土资源遥感, 2013, 25(1): 123-129.
[13] 南竣祥, 赵志芳, 洪友堂, 杜瑞玲. 云南宣威煤矿开发遥感调查研究 [J]. 国土资源遥感, 2012, 24(2): 121-124.
[14] 刘世英, 张微. 青藏铁路沿线(东昆仑—沱沱河段)遥感找矿远景评价[J]. 国土资源遥感, 2011, 23(1): 91-96.
[15] 杨则东, 陈有明, 鹿献章, 刘同庆, 黄燕, 张幼莹. 长江安徽段岸带变迁及崩岸遥感调查研究[J]. 国土资源遥感, 2010, 22(s1): 91-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发