Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 141-152    DOI: 10.6046/gtzyyg.2020248
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
舟山群岛海岸线遥感信息提取及时空演变分析
陈超1,2,3(), 陈慧欣1, 陈东4, 张自力2(), 张旭锋1, 庄悦5, 褚衍丽6, 陈建裕3, 郑红1
1.浙江海洋大学海洋科学与技术学院,舟山 316022
2.浙江省生态环境监测中心(浙江省生态环境监测预警及质控研究重点实验室),杭州 310012
3.卫星海洋环境动力学国家重点实验室(自然资源部第二海洋研究所),杭州 310012
4.国家信息中心,北京 100045
5.厦门水务原水投资运营有限公司,厦门 361000
6.浙江海洋大学经济与管理学院,舟山 316022
Coastline extraction and spatial-temporal variations using remote sensing technology in Zhoushan Islands
CHEN Chao1,2,3(), CHEN Huixin1, CHEN Dong4, ZHANG Zili2(), ZHANG Xufeng1, ZHUANG Yue5, CHU Yanli6, CHEN Jianyu3, ZHENG Hong1
1. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
2. Zhejiang Province Ecological Environment Monitoring Centre (Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control), Hangzhou 310012, China
3. State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, MNR), Hangzhou 310012, China
4. State Information Center, Beijing 100045, China
5. Xiamen Raw Water Investment Co., Ltd., Xiamen 361000, China
6. School of Economics and Management, Zhejiang Ocean University, Zhoushan 316022, China
全文: PDF(11964 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

作为我国第一个由岛屿组成的地级市,舟山市具备丰富的海洋资源,准确监测海岸线动态信息对其意义重大。而悬浮泥沙含量较大、岸线曲折、滩涂众多等给舟山群岛海岸线提取和时空演变分析带来了挑战。针对此问题,基于缨帽变换在表征地物含水量方面的优势,利用长时间序列卫星遥感数据开展海岸线时空演变分析。结果表明,该方法能够有效去除悬浮泥沙、岸线曲折、滩涂的影响,准确提取了海岸线动态信息。2000—2018年间的海岸线遥感信息提取结果表明,由各种人类活动主导的围填海使得舟山市海岸线总长度增加了约327.36 km,年均增加长度为18.19 km/a,年均增长速率为0.72%,岛屿面积增加了约112.26 km2,年均增加面积为6.24 km2/a,年均增长速率为0.49%。研究可为提高复杂海洋环境下海岸线遥感信息提取精度、海岸开发与保护等提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈超
陈慧欣
陈东
张自力
张旭锋
庄悦
褚衍丽
陈建裕
郑红
关键词 舟山群岛海岸线时空演变复杂海洋环境精度评价    
Abstract

With a special geographical location and abundant marine resources, Zhoushan is the first prefecture-level city composed of islands in China. Therefore, the acquisition of dynamic information on the coastline is of great significance to this area. However, the large amount of suspended sediments, the tortuous coastline, the numerous tidal flats and some other factors have brought a lot of challenges to coastline extraction and the analysis of the spatial-temporal dynamics in Zhoushan Islands. In order to solve this problem, the authors have developed a method for extracting coastline remote sensing information based on the tasseled cap transformation and used long time series satellite remote sensing data to carry out the analysis of the temporal and spatial evolution of the coastline. The experimental results show that the proposed method can effectively remove the influence of suspended sediments, winding coastline and shoals on the extraction of coastline information, and make its position accurate. From 2000 to 2018, the total length of the coastline of Zhoushan Islands increased by about 327.36 km, the average growth length was 18.19 km, the average growth rate was 0.72%, the total area of Zhoushan Islands increased by about 112.26 km2, the average growth area was 6.24 km2, and the average growth rate was 0.49%. The constructions of reclamation and marine projects seem to have been the main reasons for Zhoushan’s coastline changes. This study is of great significance for improving the accuracy of coastline remote sensing information extraction as well as coastal development and protection in complex marine environments.

Key wordsZhoushan Islands    coastline    spatial-temporal variations    complex marine environment    precision evaluation
收稿日期: 2020-08-11      出版日期: 2021-07-21
ZTFLH:  TP79  
基金资助:浙江省生态环境监测预警及质控研究重点实验室开放课题;浙江省省属高校科研院所基本科研业务费专项资金项目“多源时空数据支持下的海岸线信息提取及演变分析研究”(2019J00003);浙江海洋大学优秀硕士论文培育项目;国家自然科学基金项目“基于空间数据挖掘的高分辨率遥感图像水上桥梁目标识别与损毁评估”(41701447)
通讯作者: 张自力
作者简介: 陈 超(1982-),男,博士,副教授,研究方向为海岸带环境遥感。Email: chenchao@zjou.com
引用本文:   
陈超, 陈慧欣, 陈东, 张自力, 张旭锋, 庄悦, 褚衍丽, 陈建裕, 郑红. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 国土资源遥感, 2021, 33(2): 141-152.
CHEN Chao, CHEN Huixin, CHEN Dong, ZHANG Zili, ZHANG Xufeng, ZHUANG Yue, CHU Yanli, CHEN Jianyu, ZHENG Hong. Coastline extraction and spatial-temporal variations using remote sensing technology in Zhoushan Islands. Remote Sensing for Land & Resources, 2021, 33(2): 141-152.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020248      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/141
Fig.1  研究区示意图
卫星 传感器 成像时间 卫星 传感器 成像时间
Landsat5 TM 2000.05.14,2000.06.06,
2003.08.27,2003.08.02,
2007.01.26,2006.04.20,
2009.08.27,2009.07.17,
2012.08.16,2012.11.17
Landsat8 OLI 2015.04.22,
2015.03.12,
2018.06.01,
2018.07.26
Tab.1  本文所用遥感数据情况
Fig.2  技术路线图
Fig.3  典型地物缨帽变换特征空间图(绿度指数-湿度指数)
年份 生产者精度 用户精度 漏分误差 错分误差
2000年 86.82 89.30 13.18 10.70
2003年 95.89 98.10 4.11 1.90
2006年 95.74 98.02 4.26 1.98
2009年 93.55 98.42 6.45 1.58
2012年 93.47 97.52 6.53 2.48
2015年 93.69 95.42 6.31 4.58
2018年 96.21 96.26 3.79 3.74
平均值 93.62 96.15 6.38 3.85
Tab.2  海岸线遥感信息提取结果准确性评估
Fig.4  2000—2018年陆地范围对比
岛屿 长度/km 面积/km2
2000年 2003年 2006年 2009年 2012年 2015年 2018年 2000年 2003年 2006年 2009年 2012年 2015年 2018年
舟山本岛 185.80 202.50 179.42 180.88 215.88 208.25 209.40 485.79 483.16 497.51 501.54 515.76 518.18 515.02
金塘 55.53 58.80 55.26 52.26 65.88 60.54 65.88 79.04 78.75 79.88 80.91 80.09 86.09 84.71
岱山 99.13 93.84 91.92 90.90 114.54 101.10 113.04 109.00 104.30 112.17 113.40 110.70 113.41 110.85
衢山 109.48 119.52 113.22 110.41 116.58 107.40 111.93 61.18 61.68 63.22 65.48 65.72 65.58 65.56
嵊泗 66.12 72.24 70.28 69.99 79.69 76.36 70.50 22.36 23.35 23.67 23.55 23.87 23.95 25.33
六横 100.31 104.65 104.34 101.40 115.47 122.71 134.84 97.42 95.01 100.22 101.79 105.03 105.47 106.54
朱家尖 92.41 93.18 92.46 93.47 99.32 104.82 98.58 62.00 62.41 63.35 65.39 65.80 65.78 68.47
桃花岛 59.46 63.66 63.12 63.84 62.70 62.16 62.88 41.99 41.05 41.62 41.24 41.24 41.16 41.37
秀山 40.07 43.26 40.68 42.48 43.08 43.08 48.00 24.27 23.36 24.44 24.56 24.42 24.31 24.14
其他岛屿 1 725.88 1 818.18 1 798.99 1 806.46 1 824.81 1 946.14 1 946.50 315.21 312.45 329.89 346.89 343.19 361.78 368.53
总计 2 534.19 2 669.83 2 609.69 2 612.09 2 737.95 2 832.56 2 861.55 1 298.26 1 285.52 1 335.97 1 364.75 1 375.82 1 405.71 1 410.52
Tab.3  各岛屿2000—2018年间的海岸线长度和面积统计
Fig.5  2000—2018年间舟山市海岸线长度和面积变化
Fig.6  2000—2018年间舟山本岛东港区域海岸线变化
Fig.7  2000—2018年间舟山本岛北蝉区域海岸线变化
Fig.8  2000—2018年间舟山本岛岑港区域海岸线变化
Fig.9-1  2000—2018年间长峙岛及小干岛海岸线变化
Fig.9-2  2000—2018年间长峙岛及小干岛海岸线变化
Fig.10  2000—2018年间朱家尖海岸线变化
Fig.11  2000—2018年间嵊泗海岸线变化
Fig.12  2000—2018年间岱山海岸线变化
Fig.13  2000—2018年间鱼山海岸线变化
Fig.14  2000—2018年间金塘海岸线变化
Fig.15  2000—2018年间衢山海岸线变化
Fig.16  2000—2018年间洋山海岸线变化
Fig.17  2000—2018年间六横海岸线变化
[1] 吴一全, 刘忠林. 遥感影像的海岸线自动提取方法研究进展[J]. 遥感学报, 2019, 23(4):582-602.
Wu Y Q, Liu Z L. Research progress on methods of automatic coastline extraction based on remote sensing images[J]. Journal of Remote Sensing, 2019, 23(4):582-602.
[2] Ai B, Zhang R, Zhang H, et al. Dynamic process and artificial mechanism of coastline change in the Pearl River Estuary[J]. Regional Studies in Marine Science, 2019, 30:100715.
doi: 10.1016/j.rsma.2019.100715
[3] Cao W, Zhou Y, Li R, et al. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images[J]. Remote Sensing of Environment, 2020, 239:111665.
doi: 10.1016/j.rse.2020.111665
[4] Kelly J T, Gontz A M. Using GPS-surveyed intertidal zones to determine the validity of shorelines automatically mapped by Landsat water indices[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 65:92-104.
doi: 10.1016/j.jag.2017.10.007
[5] 梁立, 刘庆生, 刘高焕, 等. 基于遥感影像的海岸线提取方法综述[J]. 地球信息科学学报, 2018, 20(12):1745-1755.
doi: 10.12082/dqxxkx.2018.180152
Liang L, Liu Q S, Liu G H, et al. Review of coastline extraction methods based on remote sensing images[J]. Journal of Geo-information Science, 2018, 20(12):1745-1755.
[6] 王志华, 杨晓梅, 苏奋振, 等. 我国海岸带海岛礁遥感研究进展及建议[J]. 中国工程科学, 2019, 21(6):59-63.
Wang Z H, Yang X M, Su F Z, et al. Remote sensing application in China’s coastal zones and islands:Recent progress and some suggestions[J]. Strategic Study of CAE, 2019, 21(6):59-63.
[7] Almonacid-Caballer J, Sánchez-García E, Pardo-Pascual J E, et al. Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid-term coastal evolution indicator[J]. Marine Geology, 2016, 372:79-88.
doi: 10.1016/j.margeo.2015.12.015
[8] 李加林, 王丽佳. 围填海影响下东海区主要海湾形态时空演变[J]. 地理学报, 2020, 75(1):126-142.
doi: 10.11821/dlxb202001010
Li J L, Wang L J. Spatial and temporal evolutions of the major bays in the East China Sea under the influence of reclamataion[J]. Acta Geographica Sinica, 2020, 75(1):126-142.
[9] 隋燕, 张丽, 穆晓东, 等. 海南岛海岸线变迁遥感监测与分析[J]. 海洋学研究, 2018, 36(3):36-43.
Sui Y, Zhang L, Mu X D, et al. Coastline change detection and analysis with remote sensing in Hainan Island[J]. Journal of Marine Sciences, 2018, 36(3):36-43.
[10] 毋亭, 侯西勇. 海岸线变化研究综述[J]. 生态学报, 2016, 36(4):1170-1182.
Wu T, Hou X Y. Review of research on coastline changes[J]. Acta Ecologica Sinica, 2016, 36(4):1170-1182.
[11] Sun W, Peng J, Yang G, et al. Correntropy-based sparse spectral clustering for hyperspectral band selection[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(3):484-488.
doi: 10.1109/LGRS.8859
[12] Sun W, Yang G, Peng J, et al. Lateral-slice sparse tensor robust principal component analysis for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(1):107-111.
doi: 10.1109/LGRS.8859
[13] 孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020, 24(5):479-510.
Sun W W, Yang G, Chen C, et al. Development status and literature analysis of China’s earth observation remote sensing satellites[J]. Journal of Remote Sensing, 2019, 24(5):479-510.
[14] 张兵. 遥感大数据时代与智能信息提取[J]. 武汉大学学报(信息科学版), 2018, 43(12):1861-1871.
Zhang B. Remotely sensed big data era and intelligent information extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1861-1871.
[15] Dai C, Howat I M, Larour E, et al. Coastline extraction from repeat high resolution satellite imagery[J]. Remote Sensing of Environment, 2019, 229:260-270.
doi: 10.1016/j.rse.2019.04.010
[16] Sagar S, Roberts D, Bala B, et al. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations[J]. Remote Sensing of Environment, 2017, 195:153-169.
doi: 10.1016/j.rse.2017.04.009
[17] Ghosh M K, Kumar L, Roy C. Monitoring the coastline change of Hatiya island in Bangladesh using remote sensing techniques[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101:137-144.
doi: 10.1016/j.isprsjprs.2014.12.009
[18] Li W, Gong P. Continuous monitoring of coastline dynamics in Western Florida with a 30-year time series of Landsat imagery[J]. Remote Sensing of Environment, 2016, 179:196-209.
doi: 10.1016/j.rse.2016.03.031
[19] Liu C, Wu X, Cao X, et al. Analysis of coastline changes and the socio-economic driving mechanisms in Shenzhen,China[J]. Marine Geodesy, 2017, 40(6):378-403.
doi: 10.1080/01490419.2017.1319447
[20] Wu T, Hou X, Xu X. Spatio-temporal characteristics of the mainland coastline utilization degree over the last 70 years in China[J]. Ocean & Coastal Management, 2014, 98:150-157.
[21] 张云芝, 张千力, 胡云锋. 2010—2017年珠江河口海岸线遥感监测和动态变化分析[J]. 海洋通报, 2019, 38(2):217-224.
Zhang Y Z, Zhang Q L, Hu Y F. Remote sensing monitoring and dynamic analysis of the Pearl River Estuary coastline during 2010—2017[J]. Marine Science Bulletin, 2019, 38(2):217-224.
[22] Hsiao Y S, Hwang C, Cheng L C, et al. High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery[J]. Remote Sensing of Environment, 2016, 176:69-83.
doi: 10.1016/j.rse.2016.01.016
[23] Mulcahy N, Kennedy D M, Blanchon P. Hurricane-induced shoreline change and post-storm recovery:Northeastern Yucatan Peninsula,Mexico[J]. Journal of Coastal Research, 2016, 75(s1):1192-1196.
doi: 10.2112/SI75-239.1
[24] Hou X, Wu T, Hou W, et al. Characteristics of coastline changes in Mainland China since the early 1940s[J]. Science China Earth Sciences, 2016, 59,1791-1802.
doi: 10.1007/s11430-016-5317-5
[25] Maglione P, Parente C, Vallario A. Coastline extraction using high resolution WorldView-2 satellite imagery[J]. European Journal of Remote Sensing, 2014, 47(1),685-699.
doi: 10.5721/EuJRS20144739
[26] Pillet V, Duvat V K E, Krien Y, et al. Assessing the impacts of shoreline hardening on beach response to hurricanes:Saint-Barthélemy,Lesser Antilles[J]. Ocean & Coastal Management, 2019, 174:71-91.
[27] Quang T N, Cong T H, Quang D L, et al. Historical monitoring of shoreline changes in the Cua Dai Estuary,Central Vietnam using multi-temporal remote sensing data[J]. Geosciences, 2017, 7(3):7030072.
[28] Sun Y, Gao C, Li J, et al. Evaluating urban heat island intensity and its associated determinants of towns and cities continuum in the Yangtze River Delta urban agglomerations[J]. Sustainable Cities and Society, 2019, 50:101659.
doi: 10.1016/j.scs.2019.101659
[29] Bera R, Maiti R. Quantitative analysis of erosion and accretion (1975—2017) using DSAS:A study on Indian Sundarbans[J]. Regional Studies in Marine Science, 2019, 28:100583.
doi: 10.1016/j.rsma.2019.100583
[30] Bronstein M M, Bruna J, Lecun Y, et al. Geometric deep learning:Going beyond euclidean data[J]. IEEE Singnal Processing Magazine, 2017, 34(4):18-42.
[31] Li J, Ye M, Pu R, et al. Spatiotemporal change patterns of coastlines in Zhejiang Province,China,over the last twenty-five years[J]. Sustainability, 2018, 10(2):477.
doi: 10.3390/su10020477
[32] Liu C, Xiao Y, Yang J. A coastline detection method in polarimetric SAR images mixing the region-based and edge-based active contour models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3735-3747.
doi: 10.1109/TGRS.2017.2679112
[33] 朱长明, 张新, 骆剑承, 等. 基于样本自动选择与SVM结合的海岸线遥感自动提取[J]. 国土资源遥感, 2013, 25(2):69-74.doi; 10.6046/gtzyyg.2013.02.13.
doi: 10.6046/gtzyyg.2013.02.13
Zhu C M, Zhang X, Luo J C, et al. Automatic extraction of coastline by remote sensing technology based on SVM and auto-selection of training samples[J]. Remote Sensing for Land and Resources, 2013, 25(2):69-74.doi; 10.6046/gtzyyg.2013.02.13.
doi: 10.6046/gtzyyg.2013.02.13
[34] 胡亚斌, 任广波, 马毅, 等. 基于多时相GF-1和Landsat影像的连云港市44年海岸线遥感监测与演变分析[J]. 海洋技术学报, 2019, 38(6):9-16.
Hu Y B, Ren G B, Ma Y, et al. Remote sensing monitoring and evolution analysis of the coastline in the Lianyungang City based on multi-temporal GF-1 and Landsat images during 44 years[J]. Ocean Technology, 2019, 38(6):9-16.
[35] Tsokos A, Kotsi E, Petrakis S, et al. Combining series of multi-source high spatial resolution remote sensing datasets for the detection of shoreline displacement rates and the effectiveness of coastal zone protection measures[J]. Journal of Coastal Conservation, 2018, 22:431-441.
doi: 10.1007/s11852-018-0591-3
[36] Wu W, Yang Z, Tian B, et al. Impacts of coastal reclamation on wetlands:Loss,resilience,and sustainable management[J]. Estuarine,Coastal and Shelf Science, 2018, 210:153-161.
doi: 10.1016/j.ecss.2018.06.013
[37] Xu N, Gong P. Significant coastline changes in China during 1991—2015 tracked by Landsat data[J]. Science Bulletin, 2018, 63(14):883-886.
doi: 10.1016/j.scib.2018.05.032
[38] Liu Y, Li J, Yuan Q, et al. Comparative research on the impact of human activities on changes in coastline and landscape in bay areas:A case study with Xiangshangang bay,China and Tampa bay,USA[J]. Acta Geographica Sinica, 2016, 71(1):86-103.
[39] Naser H A. The role of environmental impact assessment in protecting coastal and marine environments in rapidly developing islands:The case of Bahrain,Arabian Gulf[J]. Ocean & Coastal Management, 2015, 104:159-169.
[40] 陈超, 何新月, 傅姣琪, 等. 基于缨帽变换的农田洪水淹没范围遥感信息提取[J]. 武汉大学学报(信息科学版), 2019, 44(10):1560-1566.
Chen C, He X Y, Fu J Q, et al. A method of flood submerging area extracting for farmland based on tasseled cap transformation from remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10):1560-1566.
[41] 沙宏杰, 张东, 崔丹丹, 等. 剖面形态自适应的海岸线遥感推算方法[J]. 海洋学报, 2019, 41(9):170-180.
Sha H J, Zhang D, Cui D D, et al. Remote sensing prediction method of coastline based on self-adaptive profile morphology[J]. Haiyang Xuebao, 2019, 41(9):170-180.
[42] 鲁旭, 陈超. 基于遥感数据的舟山市土地利用时空格局研究[J]. 浙江科技学院学报, 2018, 30(5):404-411.
Lu X, Chen C. Research on spatial-temporal pattern of land use in Zhoushan City by using remote sensing images[J]. Journal of Zhejiang University of Science and Technology, 2018, 30(5):404-411.
[43] Qiao G, Mi H, Wang W, et al. 55-year (1960—2015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 68:238-251.
doi: 10.1016/j.jag.2018.02.009
[44] Zhang B, Chen Z, Peng D, et al. Remote sensed big data:Evolution in model development for information extraction[J]. Proceedings of the IEEE, 2019, 107(12):2294-2301.
doi: 10.1109/JPROC.2019.2948454
[45] Tian B, Wu W, Yang Z, et al. Drivers,trends,and potential impacts of long-term coastal reclamation in China from 1985 to 2010[J]. Estuarine,Coastal and Shelf Science, 2016, 170:83-90.
doi: 10.1016/j.ecss.2016.01.006
[46] Tran T V, Tien T, Xuan A, Phan N H, et al. Application of remote sensing and GIS for detection of long-term mangrove shoreline changes in Mui Ca Mau,Vietnam[J]. Biogeosciences, 2014, 11:3781-3795.
doi: 10.5194/bg-11-3781-2014
[47] 李加林, 田鹏, 邵姝遥, 等. 中国东海区大陆海岸线变迁及其开发利用强度分析[J]. 自然资源学报, 2019, 34(9),1886-1901.
Li J L, Tian P, Shao S Y, et al. The changes of continental coastline and its development and utilization intensity in the East China Sea[J]. Journal of Natural Resources, 2019, 34(9):1886-1901.
[48] Chen C, Bu J, Zhang Y, et al. The application of the tasseled cap transformation and feature knowledge for the extraction of coastline information from remote sensing images[J]. Advances in Space Research, 2019, 64(9):1780-1791.
doi: 10.1016/j.asr.2019.07.032
[49] Chen C, Fu J, Zhang S, et al. Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images[J]. Estuarine,Coastal and Shelf Science, 2019, 217:281-291.
doi: 10.1016/j.ecss.2018.10.021
[1] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[2] 赵安周, 张向蕊, 相恺政, 刘宪锋, 张靓涵. 基于夜间灯光和统计数据的黄土高原城镇化水平时空格局分析[J]. 自然资源遥感, 2023, 35(3): 253-263.
[3] 梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
[4] 闫柏琨, 甘甫平, 印萍, 葛晓立, 郭艺, 白娟. 1989—2021年中国大陆海岸带潮滩、海岸线、养殖水体遥感观测[J]. 自然资源遥感, 2023, 35(3): 53-63.
[5] 朱琳, 黄玉玲, 杨刚, 孙伟伟, 陈超, 黄可. 基于GEE的杭州湾海岸线遥感提取与时空演变分析[J]. 自然资源遥感, 2023, 35(2): 50-60.
[6] 张琼艺, 李昆, 雍志玮, 熊俊楠, 程维明, 肖坤洪, 刘东丽. 基于夜光遥感数据的西南地区多维贫困测度及时空演变分析[J]. 自然资源遥感, 2022, 34(4): 286-298.
[7] 覃纹, 黄秋燕, 覃志豪, 刘剑洪, 韦高杨. 广西糖料蔗种植区干旱遥感时空分析[J]. 自然资源遥感, 2022, 34(2): 261-270.
[8] 秦大辉, 杨灵, 谌伦超, 段云飞, 贾宏亮, 李贞培, 马建琴. 基于多源数据的新疆干旱特征及干旱模型研究[J]. 自然资源遥感, 2022, 34(1): 151-157.
[9] 布自强, 白林波, 张佳瑜. 基于夜光遥感的宁夏沿黄城市群时空演变[J]. 自然资源遥感, 2022, 34(1): 169-176.
[10] 范嘉智, 罗宇, 谭诗琪, 马雯, 张弘豪, 刘富来. 基于FY-3C/MWRI的湖南省地表温度遥感反演评价[J]. 国土资源遥感, 2021, 33(1): 249-255.
[11] 古海玲, 陈超, 芦莹, 褚衍丽. 基于卫星遥感技术的区域经济发展模型构建[J]. 国土资源遥感, 2020, 32(2): 226-232.
[12] 张瑜, 赵晓丽, 左丽君, 张增祥, 徐进勇. 黄土高原土地利用变化对生态系统服务价值的影响[J]. 国土资源遥感, 2019, 31(3): 132-139.
[13] 罗昆, 丁波, 龙根元. 基于多源遥感影像的宁远河口海岸线变迁分析[J]. 国土资源遥感, 2018, 30(4): 187-192.
[14] 蒙永辉, 王集宁, 张丽霞, 罗梅. 1979—2012年莱州湾南岸海水入侵与区域海岸线变动时空耦合分析[J]. 国土资源遥感, 2018, 30(3): 189-195.
[15] 宋宏利, 张晓楠. 国家尺度异源土地覆被遥感产品精度评价[J]. 国土资源遥感, 2018, 30(3): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发