Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (3): 253-261    DOI: 10.6046/zrzyyg.2020310
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
随机森林协同Sentinel-1/2的东营市不透水层信息提取
刘春亭1(), 冯权泷2, 金鼎坚3, 史同广1, 刘建涛1(), 朱明水1
1.山东建筑大学测绘地理信息学院,济南 250101
2.中国农业大学土地科学与技术学院,北京 100083
3.中国自然资源航空物探遥感中心,北京 100083
Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City
LIU Chunting1(), FENG Quanlong2, JIN Dingjian3, SHI Tongguang1, LIU Jiantao1(), ZHU Mingshui1
1. School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China
2. College of Land Science and Technology, China Agriculture University, Beijing 100083, China
3. China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing 100083, China
全文: PDF(4741 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

不透水层是表征人类活动的重要指标,及时精确的不透水层信息对区域生态环境保护有重要意义。以山东省东营市为研究区,探索了一种基于多源Sentinel-1/2影像和随机森林的不透水层提取方法。通过对比实验发现,随机森林结合地表反射率特征、纹理特征和后向散射系数能够降低暗不透水层和亮不透水层与裸土的混淆现象,可以有效改善不透水层的估算精度(总体精度达到93.37%,Kappa系数达到0.925 8)。研究结果揭示了随机森林协同Sentinel-1和Sentinel-2数据在不透水层信息提取方面有着广泛的应用前景,为融合多源数据对黄河三角洲区域遥感监测提供了参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘春亭
冯权泷
金鼎坚
史同广
刘建涛
朱明水
关键词 东营市不透水层Sentinel-2Sentinel-1纹理随机森林    
Abstract

An impervious layer is an important indicator of human activities. Timely and accurate information of impervious layers is of great significance for the protection of the ecological environment. Taking the Yellow River Delta (Dongying City) as the study area, this study explores a novel extraction method of impervious layers by combining the random forest classification with Sentinel-1/2 data. According to comparative experiments, the confusion between dark and light impervious layers and bare soil can be reduced through the combination of the random forest algorithm with surface reflectance characteristics, texture characteristics, and backscatter coefficient, thus effectively improving the estimation accuracy of impervious layers (overall accuracy: 93.37%, Kappa coefficient: 0.925 8). The results of this study reveal that the random forest algorithm combined with Sentinel-1/2 data is a promising approach in the information extraction of impervious layers, which will provide a reference for the remote sensing monitoring of the Yellow River Delta through the integration of multi-source data.

Key wordsDongying City    impervious layer    Sentinel-2    Sentinel-1    texture    random forest
收稿日期: 2020-09-27      出版日期: 2021-09-24
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“多策略协同的区域乡村聚落遥感识别及演化机制和生态环境影响分析研究”(42171113);国家重点研发计划-政府间国际科技创新合作重点专项“中蒙牧草多源遥感监测关键技术研发”(2018YFE0122700);山东建筑大学校内博士基金“多策略协同的城市典型地表要素遥感提取”(XNBS1903)
通讯作者: 刘建涛
作者简介: 刘春亭(1996-),女,硕士研究生,主要从事遥感信息提取及应用研究。Email: ctliu96@163.com
引用本文:   
刘春亭, 冯权泷, 金鼎坚, 史同广, 刘建涛, 朱明水. 随机森林协同Sentinel-1/2的东营市不透水层信息提取[J]. 自然资源遥感, 2021, 33(3): 253-261.
LIU Chunting, FENG Quanlong, JIN Dingjian, SHI Tongguang, LIU Jiantao, ZHU Mingshui. Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City. Remote Sensing for Natural Resources, 2021, 33(3): 253-261.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020310      或      https://www.gtzyyg.com/CN/Y2021/V33/I3/253
Fig.1  研究区Sentinel-2 B4(R),B3(G),B2(B)波段合成影像
光谱波段 中心波
长/nm
波段类型 空间分
辨率/m
B2 490 蓝光波段(Blue) 10
B3 560 绿光波段(Green)
B4 665 红光波段(Red)
B8 842 近红外波段(NIR)
B5 705 植被红边波段(VRE) 20
B6 740
B7 783
B8A 865
B11 1 610 短波红外波段(SWIR)
B12 2 190
B1 443 沿海气溶胶波段(CA) 60
B9 945 水蒸汽波段(WV)
B10 1 375 短波红外卷云波段(SWIR-C)
Tab.1  Sentinel-2波段信息
Fig.2  技术流程
土地类型 分类标准 训练样
本数量
验证样
本数量
亮不透水层 屋顶、厂房等用较新的水泥或者金属、玻璃、陶瓷等明亮材料建造的不透水层 700 500
暗不透水层 屋顶、道路、停车场等用沥青、混凝土及其他深色的、低光谱反射率材料建造的不透水层 700 500
有作物耕地 生长有农作物或其他经济作物的土地 700 500
空闲耕地 轮歇地、休耕地等临时没有作物的耕地 700 500
大棚用地 种植蔬菜、瓜果、林木等以塑料、薄膜材质覆盖的耕地 350 250
林地 生长有乔木、灌木等林木的土地 700 500
水域 海洋、河流、湖泊、水库、沟渠等水体 700 500
滩涂 海洋、湖泊、河流等高潮位与低潮位之间的滩地 700 500
盐田 生产盐的土地,包括晒盐场所、盐池用地 700 500
未利用地 城镇、村庄、工厂等范围内未使用的土地,包括由于房屋拆迁还未利用的土地、正在施工的土地 280 200
Tab.2  分类体系及样本数量
Fig.3  样本点分布
土地类型 亮不透水层 暗不透水层 有作物耕地 空闲耕地 大棚用地 林地 水域 滩涂 盐田 未利用地
亮不透水层 490 4 1 0 1 0 0 0 0 4
暗不透水层 5 475 3 3 1 0 0 0 0 13
有作物耕地 0 0 477 0 1 21 1 0 0 0
空闲耕地 11 6 0 467 0 0 0 0 0 16
大棚用地 5 6 0 0 239 0 0 0 0 0
林地 0 0 68 0 0 417 15 0 0 0
水域 0 1 3 0 3 0 491 1 1 0
滩涂 9 4 3 25 0 0 3 452 4 0
盐田 0 0 0 0 0 0 3 1 496 0
未利用地 36 5 0 8 0 0 0 0 0 151
Tab.3  分类结果混淆矩阵
Fig.4  不透水层提取结果
方案编号 特征组合
A 地表反射率特征+纹理特征
B 多极化(VV和VH)后向散射系数
C(本文方案) 地表反射率特征+纹理特征+多极化(VV和VH)后向散射系数
Tab.4  Sentinel数据组合方案
类别 方案A 方案B 方案C
PA/% UA/% PA/% UA/% PA/% UA/%
亮不透水层 98.00 87.66 38.40 46.15 98.00 88.13
暗不透水层 93.20 92.09 47.20 39.80 95.00 94.81
有作物耕地 93.60 82.54 38.80 35.93 95.40 85.95
空闲耕地 90.40 91.50 39.60 42.86 93.40 92.84
大棚用地 96.40 96.79 18.00 24.59 95.60 97.55
林地 79.00 92.72 45.20 40.36 83.40 95.21
水域 98.20 95.90 64.40 58.02 98.20 95.71
滩涂 89.40 99.55 33.80 36.74 90.40 99.56
盐田 99.40 99.00 43.00 38.95 99.20 99.00
未利用地 74.50 80.11 8.50 13.18 75.50 82.07
总体精度/% 92.04 40.76 93.37
Kappa系数 0.911 0 0.335 8 0.925 8
Tab.5  分类精度统计
Fig.5  不同数据方案分类结果
分类算法 随机森林分类 支持向量机分类 决策树分类
总体精度/% 93.37 93.19 87.79
Kappa系数 0.925 8 0.923 8 0.863 5
Tab.6  随机森林、支持向量机、决策树分类精度比较
[1] Arnold L C, Gibbons C J. Impervious surface coverage:The emergence of a key environmental indicator[J]. Journal of The American Planning Association, 1996, 62(2):243-258.
doi: 10.1080/01944369608975688
[2] Leinenkugel P, Esch T, Kuenzer C. Settlement detection and impervious surface estimation in the Mekong Delta using optical and SAR remote sensing data[J]. Remote Sensing of Environment, 2011, 115(12):3007-3019.
doi: 10.1016/j.rse.2011.06.004
[3] Weng Q H, Hu X F. Medium spatial resolution satellite imagery for estimating and mapping urban impervious surfaces using LSMA and ANN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8):2397-2406.
doi: 10.1109/TGRS.2008.917601
[4] Liu Z H, Wang Y L, Li Z G, et al. Impervious surface impact on water quality in the process of rapid urbanization in Shenzhen,China[J]. Environmental Earth Sciences, 2013, 68(8):2365-2373.
doi: 10.1007/s12665-012-1918-2
[5] Ma Q, He C Y, Wu J G, et al. Quantifying spatiotemporal patterns of urban impervious surfaces in China:An improved assessment using nighttime light data[J]. Landscape and Urban Planning, 2014, 130:36-49.
doi: 10.1016/j.landurbplan.2014.06.009
[6] Ridd M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:Comparative anatomy for citiest[J]. International Journal of Remote Sensing, 1995, 16(12):2165-2185.
doi: 10.1080/01431169508954549
[7] Wu C, Murray A T. Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003, 84(4):493-505.
doi: 10.1016/S0034-4257(02)00136-0
[8] 周存林, 徐涵秋. 福州城区不透水面的光谱混合分析与识别制图[J]. 中国图象图形学报, 2007(5):875-881.
Zhou C L, Xu H Q. A spectral mixture analysis and mapping of impervious surfaces in built-up land of Fuzhou City[J]. Journal of Image Graphics, 2007(5):875-881.
[9] Carlson T N, Arthur S T. The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology:A satellite perspective[J]. Global & Planetary Change, 2000, 25(1):49-65.
[10] 徐涵秋. 一种快速提取不透水面的新型遥感指数[J]. 武汉大学学报(信息科学版), 2008(11):1150-1153.
Xu H Q. A new remote sensing index for fastly extracting impervious surface information[J]. Geomatics and Information Science of Wuhan University, 2008(11):1150-1153.
[11] Liu C, Shao Z, Chen M, et al. MNDISI:A multi-source composition index for impervious surface area estimation at the individual city scale[J]. Remote Sensing Letters, 2013, 4(8):803-812.
doi: 10.1080/2150704X.2013.798710
[12] 廖明生, 江利明, 林珲, 等. 基于CART集成学习的城市不透水层百分比遥感估算[J]. 武汉大学学报(信息科学版), 2007(12):1099-1102.
Liao M S, Jiang L M, Lin H, et al. Estimating urban impervious surface percent using boosting as a refinement of CART analysis[J]. Geomatics and Information Science of Wuhan University, 2007(12):1099-1102.
[13] 李晓宁, 张友静, 佘远见, 等. CART集成学习方法估算平原河网区不透水面覆盖度[J]. 国土资源遥感, 2013, 25(4):174-179.doi: 10.6046/gtzyyg.2013.04.28.
doi: 10.6046/gtzyyg.2013.04.28
Li X N, Zhang Y J, She Y J, et al. Estimation of impervious surface percentage of river network regions using an ensemble leaning of CART analysis[J]. Remote Sensing for Land and Resources, 2013, 25(4):174-179.doi: 10.6046/gtzyyg.2013.04.28.
doi: 10.6046/gtzyyg.2013.04.28
[14] Sung C Y, Yi Y J, Li M H. Impervious surface regulation and urban sprawl as its unintended consequence[J]. Land Use Policy, 2013, 32:317-323.
doi: 10.1016/j.landusepol.2012.10.001
[15] 程熙, 沈占锋, 骆剑承, 等. 利用混合光谱分解与SVM估算不透水面覆盖率[J]. 遥感学报, 2011, 15(6):1228-1241.
Cheng X, Shen Z F, Luo J C, et al. Estimation impervious surface based on comparison of spectral mixture analysis and support vector machine methods[J]. Remote Sensing, 2011, 15(6):1228-1241.
[16] Sun Z C, Guo H D, Li X W, et al. Estimating urban impervious surfaces from Landsat 5 TM imagery using multilayer perceptron neural network and support vector machine[J]. Journal of Applied Remote Sensing, 2011, 5(1):053501.
doi: 10.1117/1.3539767
[17] 刘莹, 孟庆岩, 王永吉, 等. 基于特征优选与支持向量机的不透水面覆盖度估算方法[J]. 地理与地理信息科学, 2018, 34(1):24-31.
Liu Y, Meng Q Y, Wang Y J, et al. A method for estimating impervious surface percentage based on feature optimization and SVM[J]. Geography and Geo-Information Science, 2018, 34(1):24-31.
[18] 骆成凤. 遗传算法优化的BP神经网络城市不透水层百分比估算[J]. 测绘科学, 2011, 36(1):48-50.
Luo C F. Estimating urban impervious surface percentage with BP neural network based on genetic algorithm[J]. Science of Surveying and Mapping, 2011, 36(1):48-50.
[19] Hu X F, Weng Q H. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks[J]. Remote Sensing of Environment, 2009, 113(10):2089-2102.
doi: 10.1016/j.rse.2009.05.014
[20] Zhang Y Z, Zhang H S, Lin H, et al. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images[J]. Remote Sensing of Environment, 2014, 141:155-167.
doi: 10.1016/j.rse.2013.10.028
[21] Shao Z F, Fu H Y, Fu P, et al. Mapping urban impervious surface by fusing optical and SAR data at the decision level[J]. Remote Sensing, 2016, 8(11),945-965.
doi: 10.3390/rs8110945
[22] Guo H D, Yang H N, Sun Z C, et al. Synergistic use of optical and PolSAR imagery for urban impervious surface estimation[J]. Photogrammetric Engineering and Remote Sensing, 2014, 80(1):91-102.
doi: 10.14358/PERS.80.1.91
[23] Deng C B, Wu C S. Examining the impacts of urban biophysical compositions on surface urban heat island:A spectral unmixing and thermal mixing approach[J]. Remote Sensing of Environment, 2013, 131:262-274.
doi: 10.1016/j.rse.2012.12.020
[24] Weng Q H. Remote sensing of impervious surfaces in the urban areas:Requirements,methods,and trends[J]. Remote Sensing of Environment, 2012, 117:34-49.
doi: 10.1016/j.rse.2011.02.030
[25] Zhang Y Z, Zhang H S, Lin H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images[J]. Remote Sensing of Environment, 2014, 141:155-167.
doi: 10.1016/j.rse.2013.10.028
[26] 唐廷元, 付波霖, 何索云, 等. 基于GF-1和Sentinel-1A的漓江流域典型地物信息提取[J]. 遥感技术与应用, 2020, 35(2):448-457.
Tang T Y, Fu B L, He S Y, et al. Identification of typical land features in the Lijiang River Basin with fusion optics and Radar[J]. Remote Sensing Technology and Application, 2020, 35(2):448-457.
[27] 张鸿生, 林殷怡, 王挺, 等. 融合光学与雷达遥感数据的城市不透水面提取方法[J]. 地理与地理信息科学, 2018, 34(3):39-46.
Zhang H S, Lin Y Y, Wang T, et al. Fusing optical and SAR remote sensing data for urban impervious surface estimation[J]. Geography and Geo-Information Science, 2018, 34(3):39-46.
[28] Masound M, Bahram S, Fariba M, et al. Random forest wetland classification using ALOS-2L-band,RADARSAT-2C-band and TerraSAR-X imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:13-31.
doi: 10.1016/j.isprsjprs.2017.05.010
[29] Zhang H S, Zhang Y Z, Lin H. A comparison study of impervious surfaces estimation using optical and SAR remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18:148-156.
doi: 10.1016/j.jag.2011.12.015
[30] Zhang H S, Li J, Wang T, et al. A manifold learning approach to urban land cover classification with optical and Radar data[J]. Landscape and Urban Planning, 2018, 172:11-24.
doi: 10.1016/j.landurbplan.2017.12.009
[31] Zhang Y Z, Zhang H S, Hui L, et al. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images[J]. Remote Sensing of Environment, 2014, 141:155-167.
doi: 10.1016/j.rse.2013.10.028
[32] Zhang H S, Lin H, Li Y, et al. Mapping urban impervious surface with dual-polarimetric SAR data:An improved method[J]. Landscape and Urban Planning, 2016, 151:55-63.
doi: 10.1016/j.landurbplan.2016.03.009
[33] 陈凯, 肖能文, 王备新, 等. 黄河三角洲石油生产对东营湿地底栖动物群落结构和水质生物评价的影响[J]. 生态学报, 2012, 32(6):1970-1978.
Chen K, Xiao N W, Wang B X, et al. The effects of petroleum on water quality bio-assessment and benthic macro-invertbrate communities in the Yellow River Delta wetland,Dongying[J]. Acta Ecologica Sinica, 2012, 32(6):1970-1978.
doi: 10.5846/stxb
[34] 丁彤彤, 周廷刚, 朱晓波, 等. 基于卫星遥感影像的黄河三角洲湿地景观格局动态变化研究——以东营市为例[J]. 西南师范大学学报(自然科学版), 2016, 41(04):52-57.
Ding T T, Zhou T G, Zhu X B, et al. On dynamic changes of wetland in Yellow River Delta with remote sensing images:A case study of Dongying City[J]. Southwest Normal University(Natural Science Edition), 2016, 41(4):52-57.
[35] 秦天天, 齐伟, 徐柏琪, 等. 基于RV指数的道路对黄河三角洲地区土地利用的影响:以东营市为例[J]. 河北农业科学, 2011, 15(11):67-72.
Qin T T, Qi W, Xu B Q, et al. Impacts of road on land use based on RV index in Yellow River Delta:A case in Dongying City[J]. Heibei Agricultural Sciences, 2011, 15(11):67-72.
[36] 刘翠翠. 黄河三角洲湿地生态修复工程效果研究[D]. 济南:山东师范大学, 2013.
Liu C C. The study of the wetland restoration engineering effect in Yellow River Delta[D]. Jinan:Shandong Normal University, 2013.
[37] 侯学会, 李新华. 黄河三角洲自然保护区1992—2010年土地覆被变化分析[J]. 亚热带植物科学, 2015, 44(4):309-314.
Hou X H, Li X H. Characteristics of land cover change in the Yellow River estuary nature reserve from 1992 to 2010[J]. Subtropical Plant Science, 2015, 44(4):309-314.
[38] Lee J S. Digital image smoothing and the sigma filter[J]. Computer Vision Graphics and Image Processing, 1983, 24:255-269.
doi: 10.1016/0734-189X(83)90047-6
[39] Lopes A, Touzi R, Nezry E. Adaptive speckle filters and scene heterogeneity[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28:992-1000.
doi: 10.1109/36.62623
[40] Xie H, Pierce L E, Ulaby F T. SAR speckle reduction using wavelet denoising and Markov random field modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40:2196-2212.
doi: 10.1109/TGRS.2002.802473
[41] Feng Q L, Liu J T, Gong J H. UAV remote sensing for urban vegetation mapping using random forest and texture analysis[J]. Remote sensing, 2015, 7(1):1074-1094.
doi: 10.3390/rs70101074
[42] Dell’Acqua F, Gamba P. Texture-based characterization of urban environments on satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41:153-159.
doi: 10.1109/TGRS.2002.807754
[43] Stasolla M, Gamba P. Spatial indexes for the extraction of formal and informal human settlements from high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1(2):98-106.
doi: 10.1109/JSTARS.4609443
[44] Feng Q L, Liu J T, Gong J H. Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier:A case of Yuyao,China[J]. Water, 2015, 7(4):1437-1455.
doi: 10.3390/w7041437
[45] Puissant A, Hirsch J, Weber C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery[J]. International Journal of Remote Sensing, 2005, 26:733-745.
doi: 10.1080/01431160512331316838
[46] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324
[47] 蒲东川. 多源卫星遥感数据驱动的城市不透水面提取[D]. 长春:吉林大学, 2020.
Pu D C. Urban impervious surface extraction driven by multi-source satellite remote sensing data[D]. Changchun:Jilin University, 2020.
[48] 蔡博文, 王树根, 王磊, 等. 基于深度学习模型的城市高分辨率遥感影像不透水面提取[J]. 地球信息科学学报, 2019, 21(9):1420-1429.
doi: 10.12082/dqxxkx.2019.180679
Cai B W, Wang S G, Wang L, et al. Extraction of urban impervious surface from high-resolution remote sensing imagery based on deep learning[J]. Geo-Information Science, 2019, 21(9):1420-1429.
[49] 邵振峰, 张源, 周伟琪, 等. 基于测绘卫星影像的城市不透水面提取[J]. 地理空间信息, 2016, 14(7):1-6.
Shao Z F, Zhang Y, Zhou W Q, et al. Extraction of urban impervious surface based on high resolution remote sensing image[J]. Geospatial Information, 2016, 14(7):1-6.
[50] 朱德海, 刘逸铭, 冯权泷, 等. 基于GEE的山东省近30年农业大棚时空动态变化研究[J]. 农业机械学报, 2020, 51(1):168-175.
Zhu D H, Liu Y M, Feng Q L, et al. Spatial-temporal dynamic changes of agricultural greenhouses in Shandong Province in recent 30 years based on Google Earth Engine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1):168-175.
[51] Rodriguez-Galiano V F, Ghimire B, Rogan J, An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67:93-104.
doi: 10.1016/j.isprsjprs.2011.11.002
[1] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[2] 席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169.
[3] 排日海·合力力, 昝梅. 干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3): 201-211.
[4] 梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
[5] 侯英卓, 纪灵, 邢前国, 盛德志. 卫星遥感辅助的大型海藻养殖动态对比监测——以威海市为例[J]. 自然资源遥感, 2023, 35(2): 34-41.
[6] 何彬方, 姚筠, 冯妍, 刘惠敏, 戴娟. 基于Sentinel-1A的安徽省2020年梅雨期洪水淹没监测[J]. 自然资源遥感, 2023, 35(1): 140-147.
[7] 吴玉鑫, 王卷乐, 韩保民, 严欣荣. 基于时空谱特征的墨脱县森林分类方法与实现[J]. 自然资源遥感, 2023, 35(1): 180-188.
[8] 田晨, 张金龙, 金义蓉, 董世元, 王彬, 张乃祥. 一种利用贝叶斯优化的蓝藻遥感分类方法[J]. 自然资源遥感, 2023, 35(1): 49-56.
[9] 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
[10] 张昊, 高小红, 史飞飞, 李润祥. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4): 144-154.
[11] 王宇, 周忠发, 王玲玉, 骆剑承, 黄登红, 张文辉. 基于Sentinel-1的喀斯特高原山区种植结构空间分异研究[J]. 自然资源遥感, 2022, 34(4): 155-165.
[12] 王春霞, 张俊, 李屹旭, Phoumilay. 复杂环境下GF-2影像水体指数的构建及验证[J]. 自然资源遥感, 2022, 34(3): 50-58.
[13] 邓静雯, 田义超, 张强, 陶进, 张亚丽, 黄升光. 机载LiDAR在红树林林分平均高估算中的应用[J]. 自然资源遥感, 2022, 34(3): 129-137.
[14] 张淑, 周忠发, 王玲玉, 陈全, 骆剑承, 赵馨. 多时相SAR的喀斯特山区耕地表层土壤水分反演[J]. 自然资源遥感, 2022, 34(3): 154-163.
[15] 查东平, 蔡海生, 张学玲, 何庆港. 基于多时相Sentinel-1水稻种植范围提取[J]. 自然资源遥感, 2022, 34(3): 184-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发