Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (3): 89-96    DOI: 10.6046/zrzyyg.2020312
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
联合显著性和多方法差异影像融合的遥感影像变化检测
王译著1(), 黄亮1,2(), 陈朋弟1, 李文国1, 余晓娜3
1.昆明理工大学国土资源工程学院,昆明 650093
2.云南省高校高原山区空间信息测绘技术应用工程研究中心,昆明 650093
3.昆明工业职业技术学院,昆明 650302
Change detection of remote sensing images based on the fusion of co-saliency difference images
WANG Yiuzhu1(), HUANG Liang1,2(), CHEN Pengdi1, LI Wenguo1, YU Xiaona3
1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Surveying and Mapping Geo-Informatics Technology Research Center on Plateau Mountains of Yunnan Higher Education, Kunming 650093, China
3. Kunming Vocational and Technical College of Industry, Kunming 650302, China
全文: PDF(4207 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对高空间分辨率遥感影像地物复杂、传统变化检测方法漏检率高的问题,提出了一种联合显著性和多方法差异影像融合的多时相遥感影像变化检测方法。选取3组双时相高空间分辨率遥感影像作为实验数据,首先分别采用变化矢量分析(change vector analysis,CVA)和光谱斜率差异(spectral gradient difference,SGD)两种方法对两个时相遥感影像进行对应的差异影像构造; 然后通过基于聚类的联合显著性方法分别获取两幅差异影像的联合显著性图; 最后,将两幅联合显著性图进行融合得到联合显著性差异图,并采用大津法(OTSU)对联合显著性差异图进行阈值分割和闭运算得到最终变化图。实验表明,该方法的总体精度(overall accuracy,OA)、Kappa系数和F-measure精度优于传统方法,可靠性强,具有很高的准确性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王译著
黄亮
陈朋弟
李文国
余晓娜
关键词 变化矢量分析光谱斜率差异联合显著性检测变化检测遥感影像    
Abstract

Owing to the complex surface features in the high spatial resolution (HR) remote sensing images, traditional change detection methods suffer the shortcoming of a high omission rate. Given this, this paper proposed a change detection method based on multi-temporal remote sensing images based on the fusion of co-saliency difference images. In this study, three groups of dual-temporal HR remote sensing images were selected to carry out the experiment according to the following steps. First, develop difference images based on the dual-temporal HR remote sensing images using the methods of change vector analysis (CVA) and spectral gradient difference (SGD). Then obtain a co-saliency map of two difference images using the cluster-based co-saliency detection. Finally, obtain the co-saliency difference map by fusing two co-saliency maps, and then conduct threshold segmentation and closing operation of the co-saliency difference map using the OTSU method. In this way, the final change map was obtained. As indicated by the experiment results, this method is superior to traditional methods in terms of overall accuracy (OA), Kappa coefficient, and F-measure accuracy and thus is highly reliable and accurate.

Key wordschange vector analysis    spectral gradient difference    co-saliency detection    change detection    remote sensing image
收稿日期: 2020-09-27      出版日期: 2021-09-24
ZTFLH:  TP79  
基金资助:国家自然学科基金项目“南方山地城镇建设用地与变化的坡度梯度效应研究”(41961039);云南省应用基础研究计划面上项目“基于全卷积神经网络的多源遥感影像变化检测”(2018FB078);云南省高校工程中心建设计划项目
通讯作者: 黄亮
作者简介: 王译著(1995-),男,硕士研究生,研究方向为遥感影像变化检测。Email: mmc55730924@163.com
引用本文:   
王译著, 黄亮, 陈朋弟, 李文国, 余晓娜. 联合显著性和多方法差异影像融合的遥感影像变化检测[J]. 自然资源遥感, 2021, 33(3): 89-96.
WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020312      或      https://www.gtzyyg.com/CN/Y2021/V33/I3/89
Fig.1  方法流程图
Fig.2  第一组影像变化检测结果
方法 FA MA OA Kappa F-measure
CVA-OTSU 26.80 24.16 73.43 8.83 25.10
SGD-OTSU 9.16 23.50 89.62 28.43 48.70
CWNN 13.22 87.73 80.40 0.19 8.70
FLICM 8.65 94.56 84.00 0.59 5.50
PCA-Kmeans 16.05 34.37 82.38 23.19 31.90
本文方法 4.09 26.18 94.02 64.59 65.00
Tab.1  第一组影像精度评价结果
Fig.3  第二组影像变化检测结果
方法 FA MA OA Kappa F-measure
CVA-OTSU 12.04 13.60 87.94 5.78 14.40
SGD-OTSU 19.10 57.15 80.22 1.96 5.00
CWNN 4.92 38.49 94.48 26.42 22.10
FLICM 5.34 19.16 94.41 32.12 25.90
PCA-Kmeans 9.36 5.56 90.71 13.38 19.20
本文方法 0.59 22.59 99.01 73.19 71.80
Tab.2  第二组影像精度评价结果
Fig.4  第三组影像变化检测结果
方法 FA MA OA Kappa F-measure
CVA-OTSU 16.64 6.90 83.62 6.07 16.50
SGD-OTSU 24.73 66.11 74.17 1.05 4.50
CWNN 17.96 17.73 82.05 15.59 13.80
FLICM 5.75 36.57 93.44 31.18 27.10
PCA-Kmeans 14.57 3.15 85.73 11.60 19.00
本文方法 1.35 33.64 97.80 60.36 59.10
Tab.3  第三组影像精度评价结果
[1] 黄亮, 左小清, 於雪琴. 遥感影像变化检测方法探讨[J]. 测绘科学, 2013, 38(4):203-206.
Huang L, Zuo X Q, Yu X Q. Review on change detection methods of remote sensing images[J]. Science of Surveyingand Mapping, 2013, 38(4):203-206.
[2] Radke R J, Andra S, Al K O, et al. Image change detection algorithms:A systematic survey[J]. IEEE Transactions on Image Processing, 2005, 14(3):294-307.
doi: 10.1109/TIP.2004.838698
[3] 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018, 43(12):1885-1898.
Sui H G, Feng W Q, Li W Z, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1885-1898.
[4] 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10):1447-1459.
Zhang L P, Wu C. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1447-1459.
[5] 黄亮, 於雪琴, 姚丙秀, 等. 线性迭代聚类和主成分分析的遥感影像变化检测[J]. 测绘科学, 2019, 44(11):189-194.
Huang L, Yu X Q, Yao B X, et al. Change detection for remote sensing images based on SLIC and PCA[J]. Science of Surveying and Mapping, 2019, 44(11):189-194.
[6] Huang L, Fang Y M, Zuo X Q, et al. Automatic change detection method of multitemporal remote sensing images based on 2D-OTSU algorithm improved by firefly algorithm[J]. Journal of Sensors, 2015(3):327123.
[7] Wu Z, Hu Z, Fan Q. Superpixel-based unsupervised change detection using multi-dimensional change vector analysis and SVM-based classification[J]. ISPRS Annals of the Photogrammetry, 2012, I-7(1):257-262.
[8] 赵敏, 赵银娣. 面向对象的多特征分级CVA遥感影像变化检测[J]. 遥感学报, 2018, 22(1):119-131.
Zhao M, Zhao Y D. Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22(1):119-131.
[9] 冯文卿, 张永军. 利用多尺度融合进行面向对象的遥感影像变化检测[J]. 测绘学报, 2015, 44(10):1142-1151.
Feng W Q, Zhang Y J. Object-oriented change detection for remote sensing images based on multiscale fusion[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10):1142-1151.
[10] Chen J, Lu M, Chen X, et al. A spectral gradient difference based approach for land cover change detection[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2013(85):1-12.
[11] 肖明虹, 冯文卿, 眭海刚. 超像素分割和多方法融合的遥感影像变化检测方法[J]. 测绘通报, 2018(10):93-97,121.
Xiao M H, Feng W Q, Sui H G. Remote sensing image change detection algorithm based on super-pixel segmentation and multiple difference maps[J]. Bulletin of Surveying and Mapping, 2018(10):93-97,121.
[12] He S F, Rynson W H L, Liu W X, et al. SuperCNN:A superpixelwise convolutional neural network for salient object detection[J]. International Journal of Computer Vision, 2015, 115(3):330-344.
doi: 10.1007/s11263-015-0822-0
[13] Fu H Z, Cao X C, Tu Z W. Cluster-based co-saliency detection[J]. IEEE Transactions on Image Processing, 2013, 22(10):3766-3778.
doi: 10.1109/TIP.83
[14] Huang L, Peng Q Z, Yu X Q. Change detection in multitemporal high spatial resolution remote-sensing images based on saliency detection and spatial intuitionistic fuzzy C-means clustering[J]. Journal of Spectroscopy, 2020:1-9.
[15] Zhao J, Liu J J, Fan D P, et al. EGNet:Edge guidance network for salient object detection[C]// CVF International Conference on Computer Vision (ICCV).IEEE, 2020:8778-8787.
[16] 刘媛媛, 孙嘉慧, 王跃勇, 等. Otsu和形态学相结合的人参叶斑图像分割系统[J/OL]. 长春:吉林农业大学学报(2020-07-23)[2020-09-24]. https://doi.org/10.13327/j.jjlau.2020.5794.
Liu Y Y, Sun J H, Wang Y Y, et al. Ginseng leaf spot image segmentation system based on Otsu and morphology algorithm[J/OL]. Changchun:Journal of Jilin Agricultural University(2020-07-23)[2020-09-24]. https://doi.org/10.13327/j.jjlau.2020.5794.
[17] Liu D, Yu J. Otsu method and K-means[C]// Ninth International Conference on Hybrid Intelligent Systems.IEEE Computer Society, 2009:344-349.
[18] Bovolo F, Bruzzone L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2005, 43(12):2963-2972.
[19] Gong M, Zhang P, Su L, et al. Coupled dictionary learning for change detection from multisource data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7077-7091.
doi: 10.1109/TGRS.2016.2594952
[20] Wu C, Du B, Cui X, et al. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion[J]. Remote Sensing of Environment, 2017, 199:241-255.
doi: 10.1016/j.rse.2017.07.009
[21] Duan Y P, Liu F, Jiao L C, et al. SAR Image segmentation based on convolutional-wavelet neural network and markov random field[J]. Pattern Recognition, 2017, 64:255-267.
doi: 10.1016/j.patcog.2016.11.015
[22] 刘瑞, 贾振红, 覃锡忠, 等. 基于模糊局部信息C均值的SAR图像变化检测[J]. 激光杂志, 2015, 36(11):28-31.
Liu R, Jia Z H, Qin X Z, et al. A new SAR image change detection based on FLICM algorithm[J]. Laser Journal, 2015, 36(11):28-31.
[23] Celik T. Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience & Remote Sensing Letters, 2009, 6(4):772-776.
[1] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[2] 闫涵, 张毅. 利用GF-6影像结合国土“三调”开展西部地区县域自然资源调查[J]. 自然资源遥感, 2023, 35(2): 277-286.
[3] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[4] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[5] 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
[6] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[7] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[8] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[9] 程滔. 一种与遥感影像同步纠正的矢量地理信息采集方法[J]. 自然资源遥感, 2022, 34(3): 59-64.
[10] 唐文魁, 俞露, 周伟奇, 岳隽, 周正. 基于长时间序列遥感数据的深圳景观连通性动态变化研究[J]. 自然资源遥感, 2022, 34(3): 97-105.
[11] 苏赋, 于海鹏, 朱威西. 标签聚类损失在遥感影像分类中的应用[J]. 自然资源遥感, 2022, 34(2): 144-151.
[12] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[13] 潘建平, 徐永杰, 李明明, 胡勇, 王春晓. 结合相关系数和特征分析的植被区域自动变化检测研发[J]. 自然资源遥感, 2022, 34(1): 67-75.
[14] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[15] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发