Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (3): 262-271    DOI: 10.6046/zrzyyg.2020324
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于多源传感器的FUI水色指数提取与应用
王一飞1,2,3,4,5(), 宫兆宁1,2,3,4(), 张园1,2,3,4, 苏朔1,2,3,4
1.首都师范大学资源环境与旅游学院,北京 100048
2.三维信息获取与应用教育部重点实验室,北京 100048
3.资源环境与地理信息系统北京市重点实验室,北京 100048
4.北京市城市环境过程与数字模拟国家重点实验室培育基地,北京 100048
5.生态环境部卫星环境应用中心,北京 100094
Extraction and application of Forel-Ule index based on images from multiple sensors
WANG Yifei1,2,3,4,5(), GONG Zhaoning1,2,3,4(), ZHANG Yuan1,2,3,4, SU Shuo1,2,3,4
1. College of Resources, Environment and Tourism, Capital Normal University, Beijing 100048, China
2. Key Laboratory of 3D Information Acquisition and Application of Ministry, Beijing 100048, China
3. Beijing Key Laboratory of Resources Environment and GIS, Beijing 100048, China
4. Beijing Laboratory of Water Resources Security, Beijing 100048, China
5. Ministry of Ecology and Environment Center for Satellite Application onEcology and Environment, Beijing 100094, China
全文: PDF(4831 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

水体颜色的定量表征可为内陆湖库综合水质的评估提供重要的参考数据。以华北内陆大型湖库官厅水库为研究对象,结合2016—2020年季相尺度的Sentinel-2和Landsat 8 OLI反射率数据,利用FUI(Forel-Ule index)水色指数反演算法,定量分析了官厅水库FUI水色的空间尺度、年内及年际尺度的异质特征; 为探究FUI水色与水体营养状态之间的耦合关系,分别利用色度角α和FUI水色指数与营养状态指数(trophic status index,TSI)进行建模; 并论证了FUI水色指数在不同传感器间的可比性及应用潜力。结果表明: ①在空间尺度上,官厅水库中心处FUI水色指数数值较低,在水库边缘处数值较高; ②在年内季相尺度上,FUI水色指数数值呈现出冬季最高,春季小幅度降低,夏季最低,秋季又上升的趋势; ③在年际尺度上,近3 a间FUI水色指数数值较前两年有所降低,水色表现为由黄棕色向黄绿色转变,这一点可能得益于北京市政府对官厅水库的有效治理; ④TSI与色度角α和FUI的Pearson相关系数分别为-0.85和 0.80,表明FUI水色与TSI指数具有强相关性; ⑤对同一天过境的Sentinel-2和Landsat 8 OLI进行FUI水色指数反演,数值分别为13.04和13.16,十分接近,表明FUI在不同传感器影像之间具有可比性,可利用多源长时序的遥感数据,实现FUI水色长时序数据的反演。FUI水色指数在水质营养状态评估方面具有明显的应用潜力和优势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王一飞
宫兆宁
张园
苏朔
关键词 官厅水库色度角FUI水色指数营养状态评估    
Abstract

The quantitative characterization of water body color can provide important reference data for the comprehensive water quality assessment of inland lakes and reservoirs. The Guanting Reservoir is a large inland lake in North China. Based on FUI inversion using the seasonal-scale Sentinel-2 and Landsat 8 OLI reflectance data during 2016—2020, this study quantitatively analyzed the heterogeneous characteristics of Forel-Ule Index (FUI) of the Guanting Reservoir on the spatial, intra-annual, and inter-annual scales. To explore the coupling relationship between the FUI and the nutrient status of the water body, models were built using both hue angle α and FUI and the trophic status index (TSI). Moreover, this study demonstrated the comparability of FUI among different sensors and its application potential. The results are as follows. ① On the spatial scale, the FUI value was low at the center but high on the edge of the reservoir. ② On the seasonal scale within a year, the FUI value showed a trend of reaching the highest in winter, slightly decreasing in spring, reaching the lowest in summer, and rising again in autumn. ③ On the interannual scale, the FUI value in the latest three years was lower than that in the first two years during 2016—2020 and the water color changed accordingly from yellowish brown to yellowish green. These may be attributable to the effective governance of the Guanting Reservoir by the Beijing Municipal Government. ④ The Pearson correlation coefficient between TSI and α and that between TSI and FUI were -0.85 and 0.80, respectively, indicating a strong correlation between FUI and TSI. ⑤ The FUI values obtained through the inversion based on the Sentinel-2 and Landsat 8 OLI images of the same day were very approximate and were 13.04 and 13.16, respectively. This indicates that FUI is comparable between the images from different sensors. Therefore, the inversion of FUI can be achieved using the long time-series remote sensing data from multiple sensors. Meanwhile, FUI possesses notable application potential and advantages in the assessment of water quality and trophic status.

Key wordsGuanting Reservoir    hue angle    FUI    trophic status assessment
收稿日期: 2020-10-16      出版日期: 2021-09-24
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“内陆浅水湖库变化水环境下沉水植物种群的遥感精细识别与时空监测”(41971381);北京水务局重点项目“面向再生水循环利用的湿地生态环境效应及建设模式研究”(TAHP-2018-ZB-YY-490S)
通讯作者: 宫兆宁
作者简介: 王一飞(1997-),男,硕士研究生,主要从事水色遥感方面的研究。Email: cyanodee@foxmail.com
引用本文:   
王一飞, 宫兆宁, 张园, 苏朔. 基于多源传感器的FUI水色指数提取与应用[J]. 自然资源遥感, 2021, 33(3): 262-271.
WANG Yifei, GONG Zhaoning, ZHANG Yuan, SU Shuo. Extraction and application of Forel-Ule index based on images from multiple sensors. Remote Sensing for Natural Resources, 2021, 33(3): 262-271.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020324      或      https://www.gtzyyg.com/CN/Y2021/V33/I3/262
Fig.1  研究区概况(Landsat8 B5(R),B6(G),B4(B)合成影像)
Fig.2  官厅水库采样点(Sentinel-2 B8(R),B4(G),B3(B)合成影像)
Fig.3  水体提取方法
Fig.4  CIE-xy色度图与FUI水色指数21个色度坐标划分示意图(色度坐标数据来自于文献[13])
i αi FUI i αi FUI
1 227.168 1 12 62.186 12
2 220.977 2 13 56.435 13
3 209.994 3 14 50.665 14
4 190.779 4 15 45.129 15
5 163.084 5 16 39.769 16
6 132.999 6 17 34.906 17
7 109.054 7 18 30.439 18
8 94.037 8 19 26.337 19
9 83.346 9 20 22.741 20
10 74.572 10 21 19.000 21
11 67.957 11
Tab.1  FUI指数查找表
传感器 a5 a4 a3 a2 a 常数项
Sentinel-2 -161.23 1 117.08 -2 950.14 3 612.17 -1 943.57 364.28
Landsat8 OLI -52.16 373.81 -981.83 1 134.19 -533.61 76.72
Tab.2  基于波段线性插值的Sentinel-2,Landsat8 OLI 传感器色度角αM的Δα偏差校正多项式系数(a=αM/100)
Fig.5  基于实测叶绿素a浓度的TSI营养状态指数分别与色度角α及FUI的拟合
Fig.6  IOCCG模拟数据集(N=500)中的FUI与TSI之间的关系[32]
Fig.7  官厅水库FUI的季节性变化
Fig.8  官厅水库各季度FUI平均数值
Fig.9  Sentinel-2与Landsat8 OLI反演FUI指数结果对比
[1] Allan J D, McIntyre P B, Smith S D D, et al. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness[J]. Proceedings of the National Academy of Sciences, 2013, 110(1):372-377.
doi: 10.1073/pnas.1213841110
[2] Guan Q, Feng L, Hou X, et al. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations[J]. Remote Sensing of Environment, 2020, 246:111890.
doi: 10.1016/j.rse.2020.111890
[3] Feng L, Hou X, Zheng Y. Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations[J]. Remote Sensing of Environment, 2019, 221:675-686.
doi: 10.1016/j.rse.2018.12.007
[4] Bukata R P. Retrospection and introspection on remote sensing of inland water quality:“Like Déjà Vu All Over Again”[J]. Journal of Great Lakes Research, 2013(39):2-5.
[5] 宫鹏. 拓展与深化中国全境的环境变化遥感应用[J]. 科学通报, 2012, 57(16):1379-1387.
Gong P. Expanding and deepening the application of remote sensing to environmental change in China[J]. Chinese Science Bulletin, 2012, 57(16):1379-1387.
[6] 王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准[J]. 中国环境监测, 2002(5):47-49.
Wang M C, Liu X Q, Zhang J H. Evaluate method and classification standard on lake eutrophication[J]. Environmental Monitoring in China, 2002(5):47-49.
[7] Carlson R E. A trophic state index for lakes 1[J]. Limnology and Oceanography, 1977, 22(2):361-369.
doi: 10.4319/lo.1977.22.2.0361
[8] Carlson R E. Expanding the trophic state concept to identify non-nutrient limited lakes and reservoirs[J]. Enhancing the States’s Lake Management Programs, 1991:59-71.
[9] Sheela A M, Letha J, Joseph S, et al. Trophic state index of a lake system using IRS (P6-LISS III) satellite imagery[J]. Environmental Monitoring and Assessment, 2011, 177(1):575-592.
doi: 10.1007/s10661-010-1658-2
[10] Joniak T, Nagengast B, Kuczyńska-Kippen N. Can popular systems of trophic classification be used for small water bodies?[J]. Oceanological and Hydrobiological Studies, 2009, 38(4):145-151.
doi: 10.2478/v10009-009-0053-1
[11] Sathyendranath S. Reports of the international ocean-colour coordinating group[R]. IOCCG, 2000.
[12] Novoa S, Wernand M R, Van der Woerd H J. The Forel-Ule scale revisited spectrally:Preparation protocol,transmission measurements and chromaticity[J]. Journal of the European Optical Society-Rapid publications, 2013, 8.
[13] Wernand M R, Van der Woerd H J. Spectral analysis of the Forel-Ule Ocean colour comparator scale[J]. Journal of the European Optical Society-Rapid Publications, 2010, 5.
[14] Wernand M R, Van der Woerd H J, Gieskes W W C. Trends in ocean colour and chlorophyll concentration from 1889 to 2000,worldwide[J]. PLOS One, 2013, 8(6):e63766.
doi: 10.1371/journal.pone.0063766
[15] Wernand M R, Hommersom A, Van der Woerd H J. MERIS-based ocean colour classification with the discrete Forel-Ule scale[J]. Ocean Science, 2013, 9(3):477-487.
doi: 10.5194/os-9-477-2013
[16] Li J, Wang S, Wu Y, et al. MODIS observations of water color of the largest 10 lakes in China between 2000 and 2012[J]. International Journal of Digital Earth, 2016, 9(8):788-805.
doi: 10.1080/17538947.2016.1139637
[17] Chen Q, Huang M, Tang X. Eutrophication assessment of seasonal urban lakes in China Yangtze River Basin using Landsat 8-derived Forel-Ule index:A six-year (2013—2018) observation[J]. Science of The Total Environment, 2019: 135392.
[18] 汪星, 宫兆宁, 井然, 等. 基于连续统去除法的水生植物提取及其时空变化分析——以官厅水库库区为例[J]. 植物生态学报, 2018, 42(6):640-652.
doi: 10.17521/cjpe.2017.0240
Wang X, Gong Z N, Jing R, et al. Extraction of aquatic plants based on continuous removal method and analysis of its temporal and spatial changes:A case study of Guanting Reservoir[J]. Chinese Journal of Plant Ecology, 2018, 42(6):640-652.
doi: 10.17521/cjpe.2017.0240
[19] 吴世民, 王芸. 北京水史[M]. 北京: 中国水利水电出版社, 2013.
Wu S M, Wang Y. Beijing water history[M]. Beijing: China Water & Power Press, 2013.
[20] 于宗绪, 马东春. 新形势下水库水质治理对策——以官厅水库为例[J]. 水利发展研究, 2019, 19(10):57-61,79.
Yu Z X, Ma D C. Countermeasures for reservoir water quality control under new situation:A case of Guanting Reservoir[J]. Water Resources Development Research, 2019, 19(10):57-61,79.
[21] 唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004(1):37-44.
Tang J W, Tian G L, Wang X Y, et al. The methods of water spectra measurement and analysis Ⅰ:Above-water method[J]. Journal of Remote Sensing, 2004(1):37-44.
[22] Mobley C D. Estimation of the remote-sensing reflectance from above-surface measurements[J]. Applied Optics, 1999, 38(36):7442-7455.
pmid: 18324298
[23] 苏伟, 张明政, 蒋坤萍, 等. Sentinel-2卫星影像的大气校正方法[J]. 光学学报, 2018, 38(1):322-331.
Su W, Zhang M Z, Jiang K P, et al. Atmospheric correction method for Sentinel-2 satellite imagery[J]. Acta Optica Sinica, 2018, 38(1):322-331.
[24] Cooley T, Anderson G P, Felde G W, et al. FLAASH,a MODTRAN4-based atmospheric correction algorithm,its application and validation[C]// IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2002: 7528709.
[25] 袁金国, 牛铮, 王锡平. 基于FLAASH的Hyperion高光谱影像大气校正[J]. 光谱学与光谱分析, 2009, 29(5):1181-1185.
Yuan J G, Niu Z, Wang X P. Atmospheric correction of Hyperion hyperspectral image based on FLAASH[J]. Spectroscopy and Spectral Analysis, 2009, 29(5):1181-1185.
[26] Mcfeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
doi: 10.1080/01431169608948714
[27] Smith T, Guild J. The CIE colorimetric standards and their use[J]. Transactions of the Optical Society, 1931, 33(3):73.
doi: 10.1088/1475-4878/33/3/301
[28] Woerd H J, Wernand M R. True colour classification of natural waters with medium-spectral resolution satellites:SeaWiFS,MODIS,MERIS and OLCI[J]. Sensors, 2015, 15(10):25663-25680.
doi: 10.3390/s151025663
[29] Van der Woerd H J, Wernand M R. Hue-angle product for low to medium spatial resolution optical satellite sensors[J]. Remote Sensing, 2018, 10(2):180.
doi: 10.3390/rs10020180
[30] Benesty J, Chen J, Huang Y, et al. Pearson correlation coefficient[M]// Noise Reduction in Speech Processing.Springer,Berlin,Heidelberg, 2009:1-4.
[31] Lee Z P. Remote sensing of inherent optical properties:Fundamentals,tests of algorithms,and applications[R]. IOCCG, 2006.
[32] Wang S, Li J, Zhang B, et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index[J]. Remote Sensing of Environment, 2018, 217:444-460.
doi: 10.1016/j.rse.2018.08.026
[1] 王丽英, 马旭伟, 有泽, 王世超, CAMARA Mahamadou. 基于多元GMM的机载多光谱LiDAR点云空谱联合分类[J]. 自然资源遥感, 2023, 35(3): 88-96.
[2] 冯晓刚, 赵毅, 李萌, 周在辉, 李凤霞, 王园, 杨永佺. 城市河道及周临用地对地表热环境的影响研究[J]. 自然资源遥感, 2023, 35(3): 264-273.
[3] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[4] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[5] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[6] 高晨, 马栋, 屈曼, 钱建国, 尹海权, 侯晓真. 基于PS-InSAR的怀来地震台钻孔体应变异常机理研究[J]. 自然资源遥感, 2023, 35(3): 153-159.
[7] 席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169.
[8] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[9] 陈昊宇, 项磊, 高贺, 牟金燚, 索晓晶, 滑博伟. 基于分数阶微分的土壤全氮高光谱反演[J]. 自然资源遥感, 2023, 35(3): 170-178.
[10] 胡晨霞, 邹滨, 梁玉, 贺晨骋, 林治家. 高空间分辨率生态系统生产总值时空演化分析——以2000—2020年湖南省为例[J]. 自然资源遥感, 2023, 35(3): 179-189.
[11] 阳煜瑾, 杨帆, 徐祯妮, 李祝. 洞庭湖区生态服务-经济发展时空协调分析与优化[J]. 自然资源遥感, 2023, 35(3): 190-200.
[12] 排日海·合力力, 昝梅. 干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3): 201-211.
[13] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[14] 娄燕寒, 廖静娟, 陈嘉明. Sentinel-3A卫星测高数据监测长江中下游河流水位变化[J]. 自然资源遥感, 2023, 35(3): 221-229.
[15] 周石松, 汤玉奇, 程宇翔, 邹滨, 冯徽徽. 郴州市郴江河流域水质与土地利用关联的空间异质性分析[J]. 自然资源遥感, 2023, 35(3): 230-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发