Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (3): 80-88    DOI: 10.6046/zrzyyg.2020336
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于无人机低空遥感和现场调查的潮滩地形反演研究
李阳1(), 袁琳1,2(), 赵志远1, 张晋磊1, 王宪业1, 张利权1
1.华东师范大学河口海岸学国家重点实验室, 崇明生态研究院,上海 200241
2.长江三角洲河口湿地生态系统教育部/上海市野外科学观测研究站,上海 202162
Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys
LI Yang1(), YUAN Lin1,2(), ZHAO Zhiyuan1, ZHANG Jinlei1, WANG Xianye1, ZHANG Liquan1
1. State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University,Shanghai 200241, China
2. Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station (Ministry of Education & Shanghai Science and Technology Committee), Shanghai 202162, China
全文: PDF(4423 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

潮滩地形与滩涂湿地生态系统的结构和功能密切相关,准确获取高精度的地形数据,对于分析潮滩的冲淤动态和盐沼植被扩散过程具有十分重要的意义。受自然潮滩观测时间有限、观测条件恶劣及植被覆盖等因素影响,传统的潮滩地形监测方法往往存在操作困难、效率较低、成本过高及覆盖范围有限等不足。文章通过无人机低空遥感方法获取航拍影像与其波段信息,基于运动结构技术提取影像三维坐标信息,构建研究区高精度数字表面模型(digital surface model,DSM),利用DSM模型直接获得无植被覆盖的光滩数字高程模型(digital elevation model,DEM); 对于有盐沼植被覆盖的区域,利用红、绿、蓝3个可见光波段信息计算可见光差异植被指数(visible-band difference vegetation index,VDVI),同时结合野外现场调查,获取潮滩盐沼植物株高与VDVI指数的定量关系,建立株高反演模型; 并利用株高反演模型从DSM中滤除植被,准确反演出潮滩植被区的DEM,从而整体获得潮滩地形的反演结果。结果表明,结合无人机低空遥感和现场调查的方法可以较好地实现对潮滩地形的精确反演: 光滩区地形均方根误差为0.07 m,其精度与高精度三维激光扫描仪测量结果接近; 经过植被滤除后,潮滩植被区地形均方根误差下降到0.14 m,数据精度可提升60%,优于传统的点云过滤方法。文章提供了一种基于无人机和现场调查的潮滩地形反演方法,实现了潮滩地形高效、大范围的监测,研究方法可应用到其他类似的潮滩或海岸区域,为海岸带滩涂湿地保护和管理提供重要的技术支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李阳
袁琳
赵志远
张晋磊
王宪业
张利权
关键词 潮滩地形无人机滤除植被可见光植被指数    
Abstract

Tidal flat topography is closely related to the structure and function of the ecosystem in intertidal wetlands. Therefore, it is significant for the analyses of tidal flat dynamics and the monitoring of the diffusion process of saltmarsh vegetation to obtain high-precision topography data. However, owing to limited ebb time, muddy tidal flats, and saltmarsh vegetation, traditional geographic observation techniques suffer the shortcomings such as low accuracy and efficiency, high cost, and limited coverage. In this study, unmanned aerial vehicle (UAV) low-altitude remote sensing was employed to obtain aerial images and their band information. Then the 3D and spectral information with precise coordinates were extracted based on the structure obtained using motion technology. They were used to construct a high-precision digital surface model (DSM) of the study area. The DSM of bare flats can be directly used as the digital elevation model (DEM) of the tidal flat. In the areas with saltmarsh vegetation, the information of red, green, and blue bands was used to calculate the visible-band vegetation index (VDVI), which was combined with field surveys to build an inversion model for vegetation height. Finally, vegetation was filtered out from the DSM using the height inversion model to obtain accurate DEM. In this way, the elevation of the vegetation zone in the tidal flat can be reflected. As indicated by the results of this study, the method that combines UAV low-altitude remote sensing with field surveys can realize precise inversion of tidal flat topography. The root mean square error (RMSE) of the topography in bare flat obtained using the method was 0.07 m and the accuracy was close to the terrestrial laser scanner (TLS). For areas with saltmarsh vegetation, the RMSE was reduced to 0.14 m and the geographical accuracy can be improved by 60% after the vegetation was filtered out. Therefore, the method is superior to traditional point cloud filtering. Overall, this study provided an inversion method of tidal flat topography based on UAV remote sensing and field surveys, which can effectively monitor large-scale natural tidal flat systems. The method can be applied to other similar natural tidal flat systems or coastal areas, providing important technological support for the protection and management of coastal tidal flat wetlands.

Key wordstidal flat    topography    UAV    vegetation filtering    VDVI
收稿日期: 2020-10-23      出版日期: 2021-09-24
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“长江口盐沼湿地生态系统稳态转换过程与机制研究”(41876093);交通运输行业重点科技项目“长江口南槽生态航道建设技术研究”(2019-MS5-106);上海市科委科研计划项目“长江河口滩涂生态脆弱区监测与安全预警关键技术”(20dz1204701)
通讯作者: 袁琳
作者简介: 李 阳(1995-),男,硕士研究生,主要从事湿地生态修复研究。Email: bigliyang123@126.com
引用本文:   
李阳, 袁琳, 赵志远, 张晋磊, 王宪业, 张利权. 基于无人机低空遥感和现场调查的潮滩地形反演研究[J]. 自然资源遥感, 2021, 33(3): 80-88.
LI Yang, YUAN Lin, ZHAO Zhiyuan, ZHANG Jinlei, WANG Xianye, ZHANG Liquan. Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys. Remote Sensing for Natural Resources, 2021, 33(3): 80-88.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020336      或      https://www.gtzyyg.com/CN/Y2021/V33/I3/80
Fig.1  崇明东滩地理位置
Fig.2  研究区地理位置
Fig.3  研究区的倾角拍摄图
Fig.4  盐沼植被的正摄图像
Fig.5  光滩的正摄图像
Fig.6  研究区的采样点分布
Fig.7  潮滩地形测量流程
Fig.8  株高的VDVI反演模型
Fig.9  研究区盐沼植被VDVI分布
Fig.10  研究区植物株高分布
Fig.11  滤除植被后的潮滩地形
Fig.12  植被滤除前后UAV反演的高程与RTK测量高程比较
生境类型 UAV扫描 植被滤除
光滩区 0.07
植被区 0.33 0.14
整体平均 0.28 0.12
Tab.1  不同生境植被滤除前后的地形反演RMSE
[1] Kirwan M L, Megonigal J P. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 2013, 504(7478):53-60.
doi: 10.1038/nature12856
[2] Duarte C M, Losada I J, Hendriks I E, et al. The role of coastal plant communities for climate change mitigation and adaptation[J]. Nature Climate Change, 2013, 3(11):961-968.
doi: 10.1038/nclimate1970
[3] Murray N J, Phinn S R, DeWitt M, et al. The global distribution and trajectory of tidal flats[J]. Nature, 2019, 565(7738):222-225.
doi: 10.1038/s41586-018-0805-8
[4] Kulawardhana R W, Feagin R A, Popescu S C, et al. The role of elevation,relative sea-level history and vegetation transition in determining carbon distribution in Spartina alterniflora dominated salt marshes[J]. Estuarine,Coastal and Shelf Science, 2015, 154:48-57.
doi: 10.1016/j.ecss.2014.12.032
[5] Yuan L, Chen Y, Wang H, et al. Windows of opportunity for salt marsh establishment:The importance for salt marsh restoration in the Yangtze Estuary[J]. Ecosphere, 2020, 11(7):e3180.
[6] Cui L, Ge Z, Yuan L, et al. Vulnerability assessment of the coastal wetlands in the Yangtze Estuary,China to sea-level rise[J]. Estuarine,Coastal and Shelf Science, 2015, 156:42-51.
doi: 10.1016/j.ecss.2014.06.015
[7] Bang J H, Bae M, Lee E J. Plant distribution along an elevational gradient in a macrotidal salt marsh on the west coast of Korea[J]. Aquatic Botany, 2018, 147:52-60.
doi: 10.1016/j.aquabot.2018.03.005
[8] 陈雅慧, 袁琳, 曹浩冰, 等. 基于胁迫梯度假说和互惠理论的海三棱藨草种群恢复技术[J]. 生态学报, 2019, 39(12):4233-4241.
Chen Y H, Yuan L, Cao H B, et al. The stress-gradient hypojournal and facilitation theory-based restoration technique for Scirpus mariqueter population[J]. Acta Ecologica Sinica, 2019, 39(12):4233-4241.
[9] Widdows J, Blauw A, Heip C, et al. Role of physical and biological processes in sediment dynamics of a tidal flat in Westerschelde Estuary,SW Netherlands[J]. Marine Ecology Progress Series, 2004, 274:41-56.
doi: 10.3354/meps274041
[10] De Backer A, Van Colen C, Vincx M, et al. The role of biophysical interactions within the ijzermonding tidal flat sediment dynamics[J]. Continental Shelf Research, 2010, 30(9):1166-1179.
doi: 10.1016/j.csr.2010.03.006
[11] Hu S, Niu Z, Chen Y, et al. Global wetlands:Potential distribution,wetland loss,and status[J]. Science of the Total Environment, 2017, 586:319-327.
doi: 10.1016/j.scitotenv.2017.02.001
[12] Nelson A, Reuter H, Gessler P. Chapter 3 DEM production methods and sources[J]. Developments in Soil Science, 2009, 33:65-85.
[13] 魏伟, 周云轩, 田波, 等. 基于地面激光扫描的典型海岸带盐沼潮滩地形反演[J]. 吉林大学学报(地球科学版), 2018, 48(6):1889-1897.
Wei W, Zhou Y X, Tian B, et al. Topography retrieval on typical salt marsh of coastal zone based on terrestrial laser scanning[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(6):1889-1897.
[14] Telling J, Lyda A, Hartzell P, et al. Review of earth science research using terrestrial laser scanning[J]. Earth-Science Reviews, 2017, 169:35-68.
doi: 10.1016/j.earscirev.2017.04.007
[15] Valente D S M, Momin A, Grift T, et al. Accuracy and precision evaluation of two low-cost RTK global navigation satellite systems[J]. Computers and Electronics in Agriculture, 2020, 168:105142.
doi: 10.1016/j.compag.2019.105142
[16] Mancini F, Dubbini M, Gattelli M, et al. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography:The structure from motion approach on coastal environments[J]. Remote Sensing, 2013, 5(12):6880-6898.
doi: 10.3390/rs5126880
[17] Reshetyuk Y, Mårtensson S. Generation of highly accurate digital elevation models with unmanned aerial vehicles[J]. The Photogrammetric Record, 2016, 31(154):143-165.
doi: 10.1111/phor.2016.31.issue-154
[18] Wijesingha J, Moeckel T, Hensgen F, et al. Evaluation of 3D point cloud-based models for the prediction of grassland biomass[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 78:352-359.
doi: 10.1016/j.jag.2018.10.006
[19] Westoby M J, Brasington J, Glasser N F, et al. ‘Structure-from-Motion’ photogrammetry:A low-cost,effective tool for geoscience applications[J]. Geomorphology, 2012, 179:300-314.
doi: 10.1016/j.geomorph.2012.08.021
[20] Han X, Thomasson J A, Bagnall G C, et al. Measurement and calibration of plant-height from fixed-wing UAV images[J]. Sensors, 2018, 18(12):4092.
doi: 10.3390/s18124092
[21] Kalacska M, Chmura G L, Lucanus O, et al. Structure from motion will revolutionize analyses of tidal wetland landscapes[J]. Remote Sensing of Environment, 2017, 199:14-24.
doi: 10.1016/j.rse.2017.06.023
[22] Dai W, Li H, Zhou Z, et al. UAV photogrammetry for elevation monitoring of intertidal mudflats[J]. Journal of Coastal Research, 2018, 85(85):236-240.
doi: 10.2112/SI85-048.1
[23] 谢卫明, 何青, 章可奇, 等. 三维激光扫描系统在潮滩地貌研究中的应用[J]. 泥沙研究, 2015, 48(6):1889-1897.
Xie W M, He Q, Zhang K Q, et al. Application of the terrestrial laser scanner to measuring geomorphology in tidal flats and salt marshes[J]. Journal of Sediment Research, 2015, 48(6):1889-1897.
[24] Zhao Z Y, Yuan L, Li W, et al. Re-invasion of Spartina alterniflora in restored saltmarshes:Seed arrival,retention,germination,and establishment[J]. Journal of Environmental Management, 2020, 266:110631.
doi: 10.1016/j.jenvman.2020.110631
[25] 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5):152-159.
Wang X Q, Wang M M, Wang S Q, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society Agricultural Engineering, 2015, 31(5):152-159.
[26] Meneses N C, Baier S, Reidelstürz P, et al. Modelling heights of sparse aquatic reed (Phragmites australis) using structure from motion point clouds derived from rotary- and fixed-wing unmanned aerial vehicle (UAV) data[J]. Limnologica, 2018, 72:10-21.
doi: 10.1016/j.limno.2018.07.001
[27] Fonstad M A, Dietrich J T, Courville B C, et al. Topographic structure from motion:A new development in photogrammetric measurement[J]. Earth Surface Processes and Landforms, 2013, 38(4):421-430.
doi: 10.1002/esp.v38.4
[28] 戴玮琦, 李欢, 龚政, 等. 无人机技术在潮滩地貌演变研究中的应用[J]. 水科学进展, 2019, 30(3):359-372.
Dai W Q, Li H, Gong Z, et al. Application of unmanned aerial vehicle technology in geomorphological evolution of tidal flat[J]. Advances in Water Science, 2019, 30(3):359-372.
[29] Bendig J, Yu K, Aasen H, et al. Combining UAV-based plant height from crop surface models,visible,and near infrared vegetation indices for biomass monitoring in barley[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39:79-87.
doi: 10.1016/j.jag.2015.02.012
[30] Rasmussen J, Ntakos G, Nielsen J, et al. Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots?[J]. European Journal of Agronomy, 2016, 74:75-92.
doi: 10.1016/j.eja.2015.11.026
[31] Tian J, Wang L, Li X, et al. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 61:22-31.
doi: 10.1016/j.jag.2017.05.002
[1] 闫柏琨, 甘甫平, 印萍, 葛晓立, 郭艺, 白娟. 1989—2021年中国大陆海岸带潮滩、海岸线、养殖水体遥感观测[J]. 自然资源遥感, 2023, 35(3): 53-63.
[2] 王振华, 谭智联, 李静, 常英立. Re-YOLOX: 利用Resizer改进的YOLOX近岸海域监测目标识别模型[J]. 自然资源遥感, 2023, 35(3): 10-16.
[3] 陈凯, 王春, 代文, 盛业华, 刘爱利, 汤国安. 基于控制点蒙特卡罗检验的无人机地形建模精度影响因素研究[J]. 自然资源遥感, 2023, 35(3): 107-115.
[4] 朱博勤, 严召进, 谢晶, 刘宏, 宋小庆, 向喜琼. FAST型大射电望远镜选址洼地地形搜寻关键技术研究[J]. 自然资源遥感, 2023, 35(2): 80-88.
[5] 陈艳英, 马鑫程, 徐彦平, 王颖, 汪艳波. 地形及NDVI在林火遥感监测二次识别中应用的方法探讨[J]. 自然资源遥感, 2022, 34(3): 88-96.
[6] 董双发, 范晓, 石海岗, 许莉萍, 章新益. 基于Landsat8和无人机的福清核电温排水分布研究[J]. 自然资源遥感, 2022, 34(3): 112-120.
[7] 张淑, 周忠发, 王玲玉, 陈全, 骆剑承, 赵馨. 多时相SAR的喀斯特山区耕地表层土壤水分反演[J]. 自然资源遥感, 2022, 34(3): 154-163.
[8] 吴芳, 李瑜, 金鼎坚, 李天祺, 郭华, 张琦洁. 无人机三维地障信息提取技术应用于航空物探飞行轨迹规划[J]. 自然资源遥感, 2022, 34(1): 286-292.
[9] 任超锋, 蒲禹池, 张福强. 顾及地理空间信息的无人机影像匹配像对提取方法[J]. 自然资源遥感, 2022, 34(1): 85-92.
[10] 郑修诚, 周斌, 雷惠, 黄祺宇, 叶浩林. 基于GEE的杭州湾慈溪段潮滩提取及时空变化分析[J]. 自然资源遥感, 2022, 34(1): 18-26.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
[13] 刘咏梅, 范鸿建, 盖星华, 刘建红, 王雷. 基于无人机高光谱影像的NDVI估算植被盖度精度分析[J]. 自然资源遥感, 2021, 33(3): 11-17.
[14] 白俊龙, 王章琼, 闫海涛. K-means聚类引导的无人机遥感图像阈值分类方法[J]. 自然资源遥感, 2021, 33(3): 114-120.
[15] 臧传凯, 沈芳, 杨正东. 基于无人机高光谱遥感的河湖水环境探测[J]. 自然资源遥感, 2021, 33(3): 45-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发