Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (2): 204-209    DOI: 10.6046/gtzyyg.2019.02.28
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于时序Sentinel-1数据的锦屏水电站左岸边坡形变探测与特征分析
王振林, 廖明生, 张路, 罗恒, 董杰
武汉大学测绘遥感信息工程国家重点实验室,武汉 430079
Detecting and characterizing deformations of the left bank slope near the Jinping hydropower station with time series Sentinel-1 data
Zhenlin WANG, Mingsheng LIAO, Lu ZHANG, Heng LUO, Jie DONG
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
全文: PDF(3841 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

水电站库岸边坡的稳定性监测是保障大坝安全运行的重要基础性工作,而形变探测是实现边坡稳定性监测的主要途径。星载合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术因其具有观测精度高,可全天候全天时工作的特点,已成为一种重要的形变监测手段。本文采用小基线集时序InSAR技术处理了56景C波段Sentinel-1影像,提取了雅砻江流域锦屏一级水电站库区左岸边坡的形变特征信息。结果表明,锦屏一级水电站上游距离大坝约1.5 km处左岸边坡上存在一处表面积超过75万m 2的大型滑坡体,2015—2018年间最大视线向形变速率超过200 mm/a。形变区主要集中在该岸坡中上部,观测时间段内视线向最大累积形变量超过500 mm,其形变时间序列无明显周期性,基本呈线性滑动趋势。采用同样的方法,对2006—2011年间获取的22景L波段ALOS-PALSAR存档数据进行处理,结果显示在大坝蓄水前,该坡体基本保持稳定。由此推断,库区蓄水造成的大幅水位上升很可能是诱发该滑坡复活的主要因素。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王振林
廖明生
张路
罗恒
董杰
关键词 锦屏一级水电站形变雷达干涉测量小基线集滑坡哨兵一号    
Abstract

tability monitoring of bank slopes along the reservoirs of hydropower projects is a fundamental task for the safety of dam operation. And deformation detection is a major approach for stability monitoring. Spaceborne InSAR technique has been recognized as an effective tool for deformation detection with its high observation accuracy and capability to work independent of weather and solar illumination. The deformation information of left bank slope of Jinping hydropower station in the Yalong River Basin was obtained by processing 56 images of C-band Sentinel-1 data with small baselines time series InSAR technique. The result indicated that there was a large landslide on the left bank slope about 1.5 km away from the dam upstream of the Jinping I hydropower station, with a surface area of more than 750,000 square meters. The maximum deformation rate in the line of sight exceeded 200 mm/a from 2015 to 2018. The deformation area was mainly concentrated in the middle and upper part of the bank slope. And the maximum cumulative deformation of the line of sight in the observation period was more than 500 mm. The time series of deformation was basically a linear sliding trend without obvious periodicity. The same method was used to process 22 archived images of L-band ALOS-PALSAR data from 2006 to 2011. The results show that the left bank slope was stable before the reservoir impoundment. It is therefore inferred that the sharp rise of water level of the reservoir might be a main trigger factor for this landslide activation.

Key wordsJinping hydropower station    deformation    InSAR    SBAS    landslide    Sentinel-1
收稿日期: 2018-09-20      出版日期: 2019-05-23
:  TP79  
基金资助:国家重点研发计划项目“星载SAR综合环境监测高精度数据处理与反演技术”(2017YFB0502700);国家自然科学基金项目“基于雷达遥感的大型水电工程库岸边坡及大坝稳定性监测方法研究”共同资助(41774006)
作者简介: 王振林(1992-),男,硕士研究生,主要从事InSAR技术在滑坡形变监测中的应用研究。Email: whuwzl@163.com。
引用本文:   
王振林, 廖明生, 张路, 罗恒, 董杰. 基于时序Sentinel-1数据的锦屏水电站左岸边坡形变探测与特征分析[J]. 国土资源遥感, 2019, 31(2): 204-209.
Zhenlin WANG, Mingsheng LIAO, Lu ZHANG, Heng LUO, Jie DONG. Detecting and characterizing deformations of the left bank slope near the Jinping hydropower station with time series Sentinel-1 data. Remote Sensing for Land & Resources, 2019, 31(2): 204-209.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.02.28      或      https://www.gtzyyg.com/CN/Y2019/V31/I2/204
参数 Sentinel-1 ALOS-PALSAR
轨道方向 升轨 升轨
波段/波长/cm C波段/5.6 L波段/23.6
成像视角/(°) 33.6 34
距离向×方位向空间分辨率/(m×m) 5×20 7×10
影像数量/景 56 22
时间跨度 20151026—20180413 20061211—20110206
Tab.1  星载SAR数据参数
Fig.1  星载SAR数据覆盖范围
Fig.2  2种数据集LOS形变速率
Fig.3  2种数据集时序分析所得累积形变序列
Fig.4  Sentinel-1LOS累积形变
Fig.5  2条剖面线高程及累积形变
Fig.6  大气延迟相位与降雨量
Fig.7  累积形变大气校正前后对比
[1] 李媛, 孟晖, 董颖 , 等. 中国地质灾害类型及其特征——基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报, 2004,15(2):29-34.
Li Y, Meng H, Dong Y , et al. Main types and characteristics of geo-hazard in China:Based on the results of geo-hazard survey in 290 counties[J]. The Chinese Journal of Geological Hazard and Control, 2004,15(2):29-34.
[2] 廖明生, 张路, 史绪国 , 等. 滑坡变形雷达遥感监测方法与实践[M]. 北京: 科学出版社, 2017: 2-4.
Liao M S, Zhang L, Shi X G , et al. Methods and Practice of Radar Remote Sensing Monitoring of Landslide Deformation[M]. Beijing: Science Press, 2017: 2-4.
[3] 李自立 . 滑坡变形监测反演参数及稳定性研究[D]. 西安:长安大学, 2005.
Li Z L . Study on Parameters Inversion and Stability of Landslide Deformation Monitoring[D]. Xi’an:Chang’an University, 2015.
[4] 廖明生, 林晖 . 雷达干涉测量:原理与信号处理基础[M]. 北京: 测绘出版社, 2003: 1-4.
Liao M S, Lin H. Synthetic Aperture Radar Interferometry:Principle and Signal Processing[M]. Beijing: Surveying and Mapping Press, 2003: 1-4.
[5] 廖明生, 唐婧, 王腾 , 等. 高分辨率SAR数据在三峡库区滑坡监测中的应用[J]. 中国科学:地球科学, 2012,42(2):217-229.
Liao M S, Tang J, Wang T , et al. Landslide monitoring with high-resolution SAR data in the Three Gorges Region[J]. Science China Earth Science, 2012,42(2):217-229.
[6] Xia Y, Kaufmann H, Guo X F . Landslide monitoring in the Three Gorges Area using D-InSAR and corner reflectors[J]. Photogrammetric Engineering and Remote Sensing, 2004,70(10):1167-1172.
doi: 10.14358/PERS.70.10.1167
[7] Ferretti A, Prati C, Rocca F . Permanent scatterers in SAR interfero-metry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(1):8-20.
doi: 10.1109/36.898661
[8] Berardino P, Fornaro G, Lanarir R , et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(11):2375-2383.
doi: 10.1109/TGRS.2002.803792
[9] 秦晓琼, 廖明生, 杨梦诗 , 等. 应用高分辨率PS-InSAR技术监测上海动迁房歪斜形变[J].测绘通报, 2016(6):18-21.
Qin X Q, Liao M S, Yang M S , et al. Monitoring Shanghai relocation housing skew deformation using high resolution PS-InSAR technology[J].Bulletin of Surveying and Mapping, 2016(6):18-21.
[10] 周洪月, 汪云甲, 闫世勇 , 等. 沧州地区地面沉降现状Sentinel-1A/B时序InSAR监测与分析[J].测绘通报, 2017(7):89-93.
Zhou H Y, Wang Y J, Yan S Y , et al. Land subsidence monitoring and analyzing of Cangzhou Area Sentinel-1A/B based time series InSAR[J].Bulletin of Surveying and Mapping, 2017(7):89-93.
[11] 刘广全 . 基于SBAS-InSAR的丹巴县滑坡探测与监测[D]. 西安:长安大学, 2015.
Liu G Q . Landslide Detection and Monitoring of Danba County Based on SBAS-InSAR[D]. Xi’an:Chang’an University, 2015.
[12] Hooper A, Zebker H, Segall P , et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004,31(23):1-5.
[13] 赵敏, 龙锋, 宫悦 . 锦屏一级水电站库区蓄水前后波速比变化研究[J].四川地震, 2016(2):22-26.
Zhao M, Long F, Gong Y . The seismic velocity ratio changes before and after the reservoir filling of Jinping hydropower station[J].Earthquake Research in Sichuan, 2016(2):22-26.
[14] 张登项 . 锦屏一级水电站坝址区左岸高边坡稳定性分析及失稳破坏预警研究[D]. 成都:成都理工大学, 2008.
Zhang D X . The Stability Analysis and Destruction of Forecasting Study on Left High Slope of Jinping Hydropower Station Dam[D]. Chengdu:Chengdu University of Technology, 2008.
[15] Rodriguez E, Morris C S, Belz J E . A global assessment of the SRTM performance[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(3):249-260.
doi: 10.14358/PERS.72.3.249
[16] 高连通, 易夏玮, 李喜 , 等. 三峡库区典型滑坡变形与高水位涨落关系研究[J]. 地质科技情报, 2011,30(4):132-136.
Gao L T, Yi X W, Li X , et al. Case study of relationship between typical landslide distortion and water changes in Three Gorges Area[J]. Geological Science and Technology Information, 2011,30(4):132-136.
[17] Yu C, Li Z, Penna N T . Interferometric synthetic aperture Radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2018,204:109-121.
doi: 10.1016/j.rse.2017.10.038
[18] 杨强, 潘元炜, 程立 , 等. 高拱坝谷幅变形机制及非饱和裂隙岩体有效应力原理研究[J]. 岩石力学与工程学报, 2015,34(11):2258-2269.
doi: 10.13722/j.cnki.jrme.2015.0972
Yang Q, Pan Y W, Cheng L , et al. Mechanism of valley deformation of high arch dam and effective stress principle for unsaturated fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2015,34(11):2258-2269.
[1] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[2] 刘志中, 宋英旭, 叶润青. 渝东北2014年“8·31”暴雨诱发滑坡遥感解译与分析[J]. 自然资源遥感, 2021, 33(4): 192-199.
[3] 陈富强, 刘亚林, 高旭, 宋明辉, 张占忠. 遥感技术在中尼铁路工程地质勘察中的应用[J]. 自然资源遥感, 2021, 33(4): 219-226.
[4] 凌晓, 刘甲美, 王涛, 朱月琴, 袁玲玲, 陈扬洋. 基于致灾因子对称法分级的信息量模型在地震滑坡危险性评价中的应用[J]. 国土资源遥感, 2021, 33(2): 172-181.
[5] 张腾, 谢帅, 黄波, 范景辉, 陈建平, 童立强. 利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡[J]. 国土资源遥感, 2021, 33(2): 213-219.
[6] 陈洁, 蔡君, 李京, 贺鹏. 倾斜航空摄影技术及在地质调查中的应用研究——以三峡库区巫峡地区为例[J]. 国土资源遥感, 2021, 33(1): 167-173.
[7] 张玲, 刘斌, 葛大庆, 郭小方. 基于多源SAR数据唐山城区活动断裂微小差异形变探测[J]. 国土资源遥感, 2020, 32(3): 114-120.
[8] 贾伟洁, 王治华. 基于高分辨率遥感影像的滑坡活动特征及稳定性分析——以东苗家滑坡为例[J]. 国土资源遥感, 2019, 31(4): 174-181.
[9] 朱茂, 沈体雁, 黄松, 白书建, 葛春青, 胡琼. InSAR技术地铁沿线建筑物形变监测[J]. 国土资源遥感, 2019, 31(2): 196-203.
[10] 白泽朝, 汪宝存, 靳国旺, 徐青, 张红敏, 刘辉. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2): 210-217.
[11] 杜磊, 陈洁, 李敏敏, 郑雄伟, 李京, 高子弘. 机载激光雷达技术在滑坡调查中的应用——以三峡库区张家湾滑坡为例[J]. 国土资源遥感, 2019, 31(1): 180-186.
[12] 汪东, 来风兵, 陈孟禹, 陈蜀江, 黄铁成, 贾翔. 基于InSAR技术天山乌吐劲河谷同震形变遥感研究[J]. 国土资源遥感, 2019, 31(1): 187-194.
[13] 杨显华, 黄洁, 田立, 彭孛, 肖礼晓, 宋新龙. 矿山遥感监测在采空区稳定性分析中的应用[J]. 国土资源遥感, 2018, 30(3): 143-150.
[14] 张策, 揭文辉, 付丽华, 魏本赞. 新疆新源县滑坡灾害遥感影像特征及分布规律[J]. 国土资源遥感, 2017, 29(s1): 81-84.
[15] 刘一霖, 张勤, 黄海军, 杨成生, 赵超英. 矿区地表大量级沉陷形变短基线集InSAR监测分析[J]. 国土资源遥感, 2017, 29(2): 144-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发