Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (2): 231-239    DOI: 10.6046/gtzyyg.2019.02.32
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
相山铀矿田西部深钻岩心成像光谱编录及蚀变分带特征
张川1,2, 叶发旺1, 徐清俊2, 邱骏挺1
1.核工业北京地质研究院遥感信息与图像分析技术国家级重点实验室,北京 100029
2.中国地质大学(北京)地球科学与资源学院,北京 100083
Deep drill logging and its alteration zoning features based on hyperspectral core imaging in west of Xiangshan uranium orefield
Chuan ZHANG1,2, Fawang YE1, Qingjun XU2, Junting QIU1
1.National Key Laboratory of Remote Sensing Information and Imagery Analyzing Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China
2.Faculty of Geosciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
全文: PDF(6173 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

相山盆地西部是目前相山铀矿田攻深找盲的重要潜力区域,其深部具体的蚀变分带仍有待进一步的研究。成像光谱岩心扫描技术为揭示深部蚀变信息提供了一种新的手段。通过对相山西部牛头山地区的科学深钻进行岩心成像光谱扫描和数据处理,完成了5类蚀变矿物的岩心填图,采用像元分类统计算法获得了整个钻孔的蚀变矿物相对含量编录曲线。通过与地质岩性编录和物探测井曲线的对比,印证了岩心成像光谱编录蚀变信息的可靠性。根据深钻岩心成像光谱编录结果,基底以上可划分为3个蚀变带: 上——绿泥石化为主,中——高岭石+地开石化和伊利石(主要是短波伊利石)化为主,下——伊利石(长波伊利石多、短波伊利石少)化为主。钻孔上、下2段铀矿化具有明显不同的蚀变矿物组合特征,反映不同波长伊利石的形成环境具有相对差异性。短波伊利石形成于相对偏酸性的流体环境,与酸性蚀变主导的铀成矿密切相关,长波伊利石形成于相对偏碱性的流体环境,与铀成矿的相关性不高。深钻蚀变分带特征反映了偏酸性的流体活动晚于偏碱性的流体活动,并作用于后者之上,铀伴随着后期的钾交代和偏酸性的流体活动逐渐富集; 深部碱交代作用的演化具有钠交代→钾交代→酸交代的总体演化规律。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张川
叶发旺
徐清俊
邱骏挺
关键词 相山深钻岩心成像光谱蚀变矿物铀矿化    
Abstract

The west of Xiangshan basin is an important potential area in the search for deep-buried uranium ore deposits in Xiangshan uranium orefield, and its deep alteration zoning remains to be further explored. Imaging hyperspectral core scanning technique provides a new means for revealing deep alteration information. On the basis of the imaging hyperspectral scanning data of deep drilling cores in the Niutoushan area of western Xiangshan, mapping of 5 types of altered minerals was realized by data processing. Then, pixels statistic algorithm was used to obtain the relative content logging curve of each altered mineral. The reliability of the imaging hyperspectral logging was verified by comparing the geological lithology and geophysical logging curves. According to the results of imaging hyperspectral logging of deep drill holes, the formations overlying the basement can be divided into three alteration zones. The main alteration of the first is chloritization, which is located in the upper part, and the second main alterations located in the middle part contain kaolinization, dickitization, and illitization dominated by shortwave illite, and the third main alteration is illitization that is characterized by more long wave and less short wave illite, located in the lower part. Uranium mineralizations in the upper and lower parts of the borehole have distinct features of altered mineral combinations and show that formation environments of illites with different wavelength characteristics are relatively different. The short wave illite tends to form in relatively acidic fluid environment, closely related to uranium mineralization controlled by acid alterations; the long wave illite tends to form in relatively alkaline fluid environment and is not closely related to uranium mineralization. Alteration zoning features of deep drill holes reveal that acidic fluid activity is later than alkaline fluid activity and acts on the latter. Uranium is gradually enriched with deuteric potassium metasomatism and acidic fluid activity. The action of deep fluid on the whole has the evolution characteristics of starting from sodium metasomatism to potassium metasomatism, followed by acid metasomatism with the time.

Key wordsXiangshan    deep drill    core    imaging hyperspectral    altered mineral    uranium mineralization
收稿日期: 2018-03-21      出版日期: 2019-05-23
:  TP79P627  
基金资助:中核集团重点专项“龙灿”创新示范工程项目“相山基础地质研究”(LCD116);中核集团龙腾二期项目“铀及多金属矿产勘查高光谱遥感综合应用示范”共同资助(遥LTY1604)
作者简介: 张 川(1985-),男,高级工程师,博士研究生,主要从事高光谱遥感信息提取、遥感地质方面的研究工作。Email: chuanzi521@163.com。
引用本文:   
张川, 叶发旺, 徐清俊, 邱骏挺. 相山铀矿田西部深钻岩心成像光谱编录及蚀变分带特征[J]. 国土资源遥感, 2019, 31(2): 231-239.
Chuan ZHANG, Fawang YE, Qingjun XU, Junting QIU. Deep drill logging and its alteration zoning features based on hyperspectral core imaging in west of Xiangshan uranium orefield. Remote Sensing for Land & Resources, 2019, 31(2): 231-239.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.02.32      或      https://www.gtzyyg.com/CN/Y2019/V31/I2/231
Fig.1  相山盆地地质简图[22]
技术参数 参数值
光谱范围/μm 1.02.5
空间像素数/个 320
横向视场角/(°) 14
瞬时视场角/mrad 0.75
光谱采样带宽/nm 6.25
通道数/个 256
数字化/bit 14
Tab.1  Hyspex SWIR-320 m-e技术参数
Fig.2  岩心成像光谱蚀变矿物填图技术流程
Fig.3  岩心蚀变矿物端元光谱曲线
蚀变矿物类型 主要光谱特征识别标志
高岭石 2 170 nm和2 205 nm附近双吸收、前浅后深
地开石 2 170 nm和2 205 nm附近双吸收、深度相近
短波伊利石 2 2002 210 nm单吸收、2 3452 355 nm单吸收
长波伊利石 2 2112 220 nm单吸收、2 3452 355 nm单吸收
绿泥石 2 3402 360 nm单吸收、2 265 nm附近单吸收
碳酸盐岩 2 3302 350 nm单吸收
Tab.2  岩心蚀变矿物诊断性光谱特征识别标志
Fig.4  矿化段岩心蚀变矿物填图
Fig.5  深钻岩心蚀变矿物相对含量编录与岩性、测井编录综合对比
Fig.6  岩心段照片
[1] 李志忠, 杨日红, 党福星 , 等. 高光谱遥感卫星技术及其地质应用[J]. 地质通报, 2009,28(2-3):270-277.
Li Z Z, Yang R H, Dang F X , et al. The hyperspectral remote sensing technology and its application[J]. Geological Bulletin of China, 2009,28(2-3):270-277.
[2] 王润生, 甘甫平, 闫柏琨 , 等. 高光谱矿物填图技术与应用研究[J]. 国土资源遥感, 2010,22(1):1-13.doi: 10.6046/gtzyyg.2010.01.01.
doi: 10.6046/gtzyyg.2010.01.01
Wang R S, Gan F P, Yan B K , et al. Hyperspectral mineral mapping and its application[J]. Remote Sensing for Land and Resources, 2010,22(1):1-13.doi: 10.6046/gtzyyg.2010.01.01.
[3] 王润生, 熊盛青, 聂洪峰 , 等. 遥感地质勘查技术与应用研究[J]. 地质学报, 2011,85(11):1699-1743.
Wang R S, Xiong S Q, Nie H F , et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011,85(11):1699-1743.
[4] Bedini E . Mineral mapping in the Kap Simpson complex,central East Greenland,using HyMap and ASTER remote sensing data[J]. Advances in Space Research, 2011,47(1):60-73.
doi: 10.1016/j.asr.2010.08.021
[5] Molan Y E, Refahi D, Tarashti A H . Mineral mapping in the Maherabad Area,eastern Iran,using the HyMap remote sensing data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,27:117-127.
doi: 10.1016/j.jag.2013.09.014
[6] Kruse F A . Identification and mapping of minerals in drill core using hyperspectral image analysis of infrared reflectance spectra[J]. International Journal of Remote Sensing, 1996,17(9):1623-1632.
doi: 10.1080/01431169608948728
[7] Taylor G R . Mineral and lithology mapping of drill core pulps using visible and infrared spectrometry[J]. Natural Resources Research, 2000,9(4):257-268.
doi: 10.1023/A:1011501125239
[8] 王晋年, 李志忠, 张立福 , 等. “光谱地壳”计划——探索新一代矿产勘查技术[J]. 地球信息科学学报, 2012,14(3):344-351.
doi: 10.3724/SP.J.1047.2012.00344
Wang J N, Li Z Z, Zhang L F , et al. “Spectral Crust” project:Research on new mineral exploration technology[J]. Journal of Geo-information Science, 2012,14(3):344-351.
[9] Huntington J, Quigley M, Yang K, et al. A geological overview of HyLogging 18 000 m of core from the Eastern Goldfields of Western Australia [C]//Proceedings 6th International Mining Geology Conference,Darwin:AusIMM, 2006.
[10] Tappert M, Rivard B, Giles D , et al. Automated drill core logging using visible and near-infrared reflectance spectroscopy:A case study from the Olympic Dam IOCG deposit,South Australia[J]. Economic Geology, 2011,106(2):289-296.
doi: 10.2113/econgeo.106.2.289
[11] Tappert M C, Rivard B, Giles D , et al. The mineral chemistry,near-infrared,and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit,South Australia[J]. Ore Geo-logy Reviews, 2013,53(3):26-38.
doi: 10.1016/j.oregeorev.2012.12.006
[12] Travers S J , Wilson C J L .Reflectance spectroscopy and alteration assemblages at the Leven Star gold deposit,Victoria,Australia[J]. Australian Journal of Earth Sciences, 2015,62(7):873-882.
doi: 10.1080/08120099.2015.1114525
[13] Shi X Z, Aspandiar M, Oldmeadow D . Reflectance spectral characterization and mineralogy of acid sulphate soil in subsurface using hyperspectral data[J]. International Journal of Sediment Research, 2014,29(2):149-158.
doi: 10.1016/S1001-6279(14)60031-7
[14] Hill A J, Mauger A J . HyLogging unconventional petroleum core from the Cooper Basin,South Australia[J]. Australian Journal of Earth Sciences, 2016,63(8):1087-1097.
doi: 10.1080/08120099.2016.1261369
[15] 胥燕辉, 田庆久 . 磁铁石英岩型铁矿岩芯光谱编录研究[J]. 国土资源遥感, 2005,17(3):70-73.doi: 10.6046/gtzyyg.2005.03.17.
doi: 10.6046/gtzyyg.2005.03.17
Xu Y H, Tian Q J . A drill core spectral logging study in a magnetite-quartzite type iron deposit[J]. Remote Sensing for Land and Resources, 2005,17(3):70-73.doi: 10.6046/gtzyyg.2005.03.17.
[16] 胥燕辉 . 铁矿岩心高光谱编录初探[J]. 地质找矿论丛, 2006,21(s1):113-117.
Xu Y H . The preliminary study on hyperspectral core logging[J]. Contributions to Geology and Mineral Resources Research, 2006,21(s1):113-117.
[17] 修连存, 郑志忠, 俞正奎 , 等. 近红外光谱仪测定岩石中蚀变矿物方法研究[J]. 岩矿测试, 2009,28(6):519-523.
Xiu L C, Zheng Z Z, Yu Z K , et al. Study on method of measuring altered minerals in rocks with near-infrared spectrometer[J]. Rock and Mineral Analysis, 2009,28(6):519-523.
[18] 李晶, 祁进平, 修连存 , 等. 岩芯光谱扫描仪在紫金山矿产勘查中的应用[J]. 矿物学报, 2013,33(s2):1020-1021.
Li J, Qi J P, Xiu L C , et al. Application of core spectrum scanner in Zijinshan mineral exploration[J]. Acta Mineralogica Sinica, 2013,33(s2):1020-1021.
[19] 张杰林, 黄艳菊, 王俊虎 , 等. 铀矿勘查钻孔岩心高光谱编录及三维矿物填图技术研究[J]. 铀矿地质, 2013,29(4):249-255.
Zhang J L, Huang Y J, Wang J H , et al. Hyperspectral drilling core logging and 3D mineral mapping technology for uranium exploration[J]. Uranium Geology, 2013,29(4):249-255.
[20] Xiu L C, Chen C X, Zheng Z Z , et al. Design and application of core mineral spectrometer[J]. Chinese Optics Letters, 2014,12(8):88-92.
[21] 张万良 . 相山铀矿田矿体形态分类及成因意义[J]. 大地构造与成矿学, 2015,39(5):844-854.
Zhang W L . Orebody morphology and mineralization structure type of Xiangshan uranium field[J]. Geotectonica et Metallogenia, 2015,39(5):844-854.
[22] 林子瑜, 李子颖, 龙期华 , 等. 相山铀矿田三维地质新认识[J]. 铀矿地质, 2013,29(4):199-207.
Lin Z Y, Li Z Y, Long Q H , et al. New geologic cognitions with 3D vision in Xiangshan uranium orefield[J]. Uranium Geology, 2013,29(4):199-207.
[23] 甘甫平, 王润生, 马蔼乃 . 基于特征谱带的高光谱遥感矿物谱系识别[J]. 地学前缘, 2003,10(2):445-454.
Gan F P, Wang R S, Ma A N . Spectral identification tree(SIT) for mineral extraction based on spectral characteristics of minerals[J]. Earth Science Frontiers, 2003,10(2):445-454.
[24] Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data:In Summaries [C]//Fifth JPL Airborne Earth Science Workshop.Pasadena:JPL, 1995: 23-26.
[25] Winter M E. A proof of the N-FINDR algorithm for the automated detection of endmembers in a hyperspectral image [C]//Proceedings of SPIE,Algorithms and Technologies for Multispectral,Hyperspectral,and Ultraspectral Imagery X, 2004,5425:31-41.
[26] Scott K M, Yang K . Exploration and Mining Report 439R Spectral Reflectance Studies of White Micas[R]. Melbourne:Australian Mineral Industries Research Association, 1997, 1-35.
[27] Yang K, Huntington J F, Boardman J W , et al. Mapping hydrothermal alteration in the Comstock mining district,Nevada,using simulated satellite-borne hyperspectral data[J]. Australian Journal of Earth Sciences, 1999,46(6):915-922.
doi: 10.1046/j.1440-0952.1999.00754.x
[28] 修连存, 郑志忠, 俞正奎 , 等. 近红外光谱分析技术在蚀变矿物鉴定中的应用[J]. 地质学报, 2007,81(11):1584-1590.
Xiu L C, Zheng Z Z, Yu Z K , et al. Mineral analysis technology application with near infrared spectroscopy in identifying alteration mineral[J]. Acta Geologica Sinica, 2007,81(11):1584-1590.
[29] Yang K , Browne P R L,Huntington J F ,et al.Characterising the hydrothermal alteration of the Broadlands-Ohaaki geothermal system,New Zealand,using short-wave infrared spectroscopy[J]. Journal of Volcanology and Geothermal Research, 2001,106(1):53-65.
doi: 10.1016/S0377-0273(00)00264-X
[30] 杨志明, 侯增谦, 杨竹森 , 等. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J]. 矿床地质, 2012,31(4):699-717.
Yang Z M, Hou Z Q, Yang Z S , et al. Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district:A case study of Niancun ore district,Tibet[J]. Mineral Deposits, 2012,31(4):699-717.
[31] Zhang X Y, Li P J . Lithological mapping from hyperspectral data by improved use of spectral angle mapper[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,31(5):95-109.
doi: 10.1016/j.jag.2014.03.007
[32] 张川, 叶发旺, 姚佳蕾 , 等. 成像光谱钻孔岩芯编录的实现方法[J]. 遥感信息, 2017,32(5):69-74.
Zhang C, Ye F W, Yao J L , et al. Implementation method of drill core logging based on imaging spectrometer[J]. Remote Sensing Information, 2017,32(5):69-74.
[33] 郭娜, 黄一入, 郑龙 , 等. 高硫-低硫化浅成低温热液矿床的短波红外矿物分布特征及找矿模型——以西藏铁格隆南(荣那矿段)、斯弄多矿床为例[J]. 地球学报, 2017,38(5):767-778.
Guo N, Huang Y R, Zheng L , et al. Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique:A case study of Tiegelongnan and Sinongduo Deposits[J]. Acta Geoscientia Sinica, 2017,38(5):767-778.
[34] Harraden C L, Mcnulty B A, Gregory M J , et al. Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble Porphyry Copper-Gold-Molybdnum deposit,Iliamna,Alaska[J]. Economic Geology, 2013,108(3):483-494.
doi: 10.2113/econgeo.108.3.483
[35] Herrmann W, Blake M, Doyle M , et al. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis,Tasmania,and Highway-Reward,Queensland[J]. Economic Geology, 2001,96(5):939-955.
[36] Yang K, Lian C, Huntington J F , et al. Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu-Au deposit,Xinjiang,China[J]. Mineralium Deposita, 2005,40(3):324-336.
doi: 10.1007/s00126-005-0479-7
[37] 陈光远, 孙岱生, 殷辉安 . 成因矿物学与找矿矿物学[M]. 重庆: 重庆出版社, 1988: 435-486.
Chen G Y, Sun D S, Yin H A. Genetic Mineralogy and Prospecting Mineralogy[M]. Chongqing: Chongqing Press, 1988: 435-486.
[38] 林锦荣, 胡志华, 谢国发 , 等. 相山铀矿田深部找矿标志及找矿方向[J]. 铀矿地质, 2013,29(6):321-327.
Lin J R, Hu Z H, Xie G F , et al. The indicators and direction for deep exploration in Xiangshan uranium ore field[J]. Uranium Geo-logy, 2013,29(6):321-327.
[39] 叶天竺, 薛建玲 . 金属矿床深部找矿中的地质研究[J]. 中国地质, 2007,34(5):855-869.
Ye T Z, Xue J L . Geological study in search of metallic ore deposits at depth[J]. Geology in China, 2007,34(5):855-869.
[40] 杜乐天 . 碱交代岩研究的重大成因意义[J]. 矿床地质, 2002,21(s1):953-958.
Du L T . The important significance of alkali-metasomatic rock studies[J]. Mineral Deposits, 2002,21(s1):953-958.
[41] 胡宝群, 王倩, 邱林飞 , 等. 相山矿田邹家山铀矿床碱交代矿化蚀变岩地球化学[J]. 大地构造与成矿学, 2016,40(2):377-385.
Hu B Q, Wang Q, Qiu L F , et al. Geochemistry of alkali metasomatized rocks of Zoujiashan uranium ore-deposit in Xiangshan ore-field[J]. Geotectonica et Metallogenia, 2016,40(2):377-385.
[1] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[2] 王瑞军, 张春雷, 孙永彬, 王诜, 董双发, 王永军, 闫柏琨. 高光谱在甘肃红山多金属找矿模型构建中的应用[J]. 国土资源遥感, 2020, 32(3): 222-231.
[3] 田青林, 潘蔚, 李瑶, 张川, 陈雪娇, 余长发. 基于小波包变换和权重光谱角制图的岩心高光谱蚀变信息提取[J]. 国土资源遥感, 2019, 31(4): 41-46.
[4] 蒙亚平, 杜培军, 李二珠, 张浩, 徐志刚. 国产岩心光谱扫描仪CMS350A数据预处理技术[J]. 国土资源遥感, 2017, 29(4): 73-81.
[5] 任广利, 杨敏, 李健强, 高婷, 梁楠, 易欢, 杨军录. 高光谱蚀变信息在金矿找矿预测中的应用研究——以北山方山口金矿线索为例[J]. 国土资源遥感, 2017, 29(3): 182-190.
[6] 孟丹, 宫辉力, 李小娟, 杨思遥. 北京7·21暴雨时空分布特征及热岛-雨岛响应关系[J]. 国土资源遥感, 2017, 29(1): 178-185.
[7] 张媛, 张杰林, 赵学胜, 袁博. 基于峰值权重的岩心高光谱矿化蚀变信息提取[J]. 国土资源遥感, 2015, 27(2): 154-159.
[8] 方圣辉, 乐源, 杨光. 基于HyperScan成像光谱数据的植被叶绿素反演[J]. 国土资源遥感, 2013, 25(4): 40-47.
[9] 叶发旺, 刘德长. 高分卫星遥感数据在铀矿化褪色蚀变识别分析中的应用[J]. 国土资源遥感, 2012, 24(4): 117-123.
[10] 兰穹穹, 张立福, 吴太夏. 基于灰度归一化的HJ-1A星HSI图像条带噪声去除方法[J]. 国土资源遥感, 2012, 24(2): 45-49.
[11] 胡畔, 田庆久, 闫柏琨. 柴达木盆地烃蚀变矿物高光谱遥感识别研究[J]. 国土资源遥感, 2009, 21(2): 54-61.
[12] 杨苏明, 王润生, 刘圣伟. 成像光谱矿物识别中的大气校正效果分析[J]. 国土资源遥感, 2007, 19(4): 95-99.
[13] 王润生, 杨苏明, 柏琨. 成像光谱矿物识别方法与识别模型评述[J]. 国土资源遥感, 2007, 19(1): 1-9.
[14] 刘圣伟, 闫柏琨, 甘甫平, 杨苏明, 王润生, 王青华. 绢云母的光谱特征变异分析及成像光谱地质成因信息提取[J]. 国土资源遥感, 2006, 18(2): 46-50.
[15] 周军, 陈明勇, 高鹏, 刘磊, 李得成, 田勤虎. 新疆东准噶尔蚀变矿物填图及多元信息找矿[J]. 国土资源遥感, 2005, 17(4): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发