Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (1): 20-29    DOI: 10.6046/gtzyyg.2020104
     遥感水体及特定要素提取专栏 本期目录 | 过刊浏览 | 高级检索 |
黑臭水体遥感识别研究进展
陈帅1(), 赵文玉2,3(), 廖中平1
1.长沙理工大学交通运输工程学院,长沙 410114
2.洞庭湖水环境治理与生态修复湖南省重点实验室,长沙理工大学水利工程学院,长沙 410114
3.湖南省水生资源食品加工工程技术研究中心,长沙理工大学化学与食品工程学院,长沙 410114
Remote sensing identification of black-odor water bodies: A review
CHEN Shuai1(), ZHAO Wenyu2,3(), LIAO Zhongping1
1. School of Traffic & Transportation Engineering, Changsha university of Science & Technology, Changsha 410114, China
2. School of Hydraulic Engineering, Changsha University of Science & Technology, Key Laboratory of Dongting Lake Aquatic Eco- Environmental Control and Restoration of Hunan Province, Changsha 410114, China
3. School of Chemistry and Food Engineering, Changsha University of Science & Technology, Aquatic Resources Food Processing Engineering Technology Research Centre of Hunan, Changsha 410114, China
全文: PDF(1375 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

黑臭水体对生态环境质量影响严重,加强黑臭水体整治是水环境治理的重要工作。黑臭水体的宏观监测是治理的前提,而遥感技术在宏观监测领域有巨大的优势。目前利用遥感技术识别黑臭水体已有少量研究,本文系统总结了目前黑臭水体遥感识别的研究现状,从反射光谱、水体颜色以及固有光学量3个识别特征分析黑臭水体的光学特性,并分别归纳其识别算法; 总结了这些算法可能存在的问题,包括算法通用性问题、大气校正问题导致遥感反射率不准确、对于不同类型水体识别特征出现重叠部分等; 最后从进一步挖掘识别特征、进行反射光谱分类、应用机器学习算法3方面对未来的发展趋势进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈帅
赵文玉
廖中平
关键词 黑臭水体光学特性遥感识别算法    
Abstract

The equality of ecological environment has been severely affected by black-odor water bodies, and hence strengthening the treatment of black-odor water bodies is an important task for aquatic environment management. Macro-monitoring of black-odor water bodies is the prerequisite for governance, and remote sensing technology has huge advantages in the field of macro-monitoring. There have been very insufficient studies on black and odorous water bodies. This paper systematically summarizes the current status of identification and recognition of black-odor water bodies, mainly analyzes the optical characteristics of black-odor water bodies from the three identification characteristics of reflection spectrum, watercolor, and inherent optical quantity, summarizes the recognition algorithms and the problems of these algorithms, which include the low versatility of the algorithm, the inaccurate reflectance caused by the problem of atmospheric correction features, and the overlapping features of different types of water recognition features. The future development trends are predicted: ① mining recognition characteristics; ② performing classification of reflection spectrum; ③ applying of machine learning algorithms.

Key wordsblack-odor water bodies    optical characteristics    remote sensing    recognition algorithms
收稿日期: 2020-04-13      出版日期: 2021-03-18
ZTFLH:  TP79  
基金资助:湖南省重点研发计划项目“黑臭水体水质监控与黑臭预警关键技术”(2018SK2011);洞庭湖水环境治理与生态修复湖南省重点实验室开放基金项目“洞庭湖流域水污染现状及其对渔业影响研究”(2018DT02);湖南省水生资源食品加工工程技术研究中心开放基金项目“洞庭湖鱼类环境激素生物效应研究”(2018KJY11);湖南省研究生科研创新项目“基于遥感卫星影像的黑臭水体识别算法研究”共同资助(CX20190666)
通讯作者: 赵文玉
作者简介: 陈 帅(1997-),男,硕士研究生,主要研究水色遥感。Email: csincs@stu.csust.edu.cn
引用本文:   
陈帅, 赵文玉, 廖中平. 黑臭水体遥感识别研究进展[J]. 国土资源遥感, 2021, 33(1): 20-29.
CHEN Shuai, ZHAO Wenyu, LIAO Zhongping. Remote sensing identification of black-odor water bodies: A review. Remote Sensing for Land & Resources, 2021, 33(1): 20-29.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020104      或      https://www.gtzyyg.com/CN/Y2021/V33/I1/20
Fig.1  非黑臭水体和黑臭水体实测反射率[15,37,39]
Fig.2  非黑臭水体和黑臭水体等效反射率[37, 39]
Fig.3  非黑臭水体和黑臭水体影像反射率[16,41]
反射率类型 模型 阈值(n) 正确率/% 实验地点 文献来源
实测 345(2Rrs(555)-Rrs(485)-Rrs(660))sum(Rrs(485):Rrs(830))n 0.80 77.42 北京、杭州等 [15]
等效 0Greenn 0.019 50 南京 [37]
等效 0Green-Bluen 0.0036 75 南京 [37]
等效 n1Green+RedGreen-Redn2 n1=0.06 100 南京 [37]
n2=0.115
等效 Green-BlueGreen-RedΔλ1Δλ2n 0.005 62.5 南京 [42]
等效 Green-RedBlue+Green+Redn 0.065 100 沈阳 [39]
影像 NIR+Red-Bluen 0.85 92 北京 [16]
影像 NIR+Red-Greenn 0.87 85 北京 [16]
影像 NIR+Red-BlueNIR+Red+Bluen 0.4 北京 [16]
影像 NIR+Red-GreenBlue+Green+Greenn 0.45 北京 [16]
影像 n1(Green-Blue)/Δλ1(Red-Green)/Δλ2n2 n1=0 92.86 太原 [41]
n2=1
Tab.1  基于反射光谱的阈值法
[1] 国家住房和城乡建设部. 城市黑臭水体整治工作指南[EB/OL].[2015-08-28]. http://www.mohurd.gov.cn/wjfb/201509/W020150911050936.pdf.
Ministry of Housing and Urban-Rural Development of China. Guideline for urban black and odorous water treatment[EB/OL]. [2015-08-28]. http://www.mohurd.gov.cn/wjfb/201509/W020150911050936.pdf .
[2] 应太林, 张国莹, 吴芯芯. 苏州河水体黑臭机理及底质再悬浮对水体的影响[J]. 上海环境科学, 1997(1):23-26.
Ying T L, Zhang G Y, Wu X X. The mechanism of blackening and stink and effects of resuspended sediments on Suzhou creek water quality[J]. Shanghai Environmental Sciences, 1997(1):23-28.
[3] Cheng X, Peterkin E, Burlingame G A. A study on volatile organic sulfide causes of odors at Philadelphia’s northeast water pollution control plant[J]. Water Research, 2005,39(16):3781-3790.
[4] Deval I, Delaune R D. Emission of reduced malodorous sulfur gases from wastewater treatment plants[J]. Water Environment Research, 1999,71(2):203-208.
[5] 于玉彬, 黄勇. 城市河流黑臭原因及机理的研究进展[J]. 环境科技, 2010,23(s2):111-114.
Yu Y B, Huang Y. Review of reason and mechanism of black and stink in urban rivers[J]. Environmental Science and Technology, 2010,23(s2):111-114.
[6] 王旭, 王永刚, 孙长虹, 等. 城市黑臭水体形成机理与评价方法研究进展[J]. 应用生态学报, 2016,27(4):1331-1340.
pmid: 29732792
Wang X, Wang Y G, Sun C H, et al. Formation mechanism and assessment method for urban black and odorous water body:A review[J]. Chinese Journal of Applied Ecology, 2016,27(4):1331-1340.
doi: 10.13287/j.1001-9332.201604.014 pmid: 29732792
[7] 张晓. 中国水污染趋势与治理制度[J]. 中国软科学, 2014(10):11-24.
Zhang X. Trend of and the governance system for water pollution in china[J]. China Soft Science, 2014(10):11-24.
[8] 国务院. 水污染防治行动计划[EB/OL].(2015-04-16). http://www.gov.cn/xinwen/2015-04/16/content_2847709.htm.
State Council of China. Action plan for prevention and control of water pollution.[EB/OL].(2015-04-16). http://www.gov.cn/xinwen/2015-04/16/content_2847709.htm.
[9] 程江, 吴阿娜, 车越, 等. 平原河网地区水体黑臭预测评价关键指标研究[J]. 中国给水排水, 2006(9):18-22.
Cheng J, Wu A N, Che Y, et al. Study on key indicators for judging black and odorous water in area of plain river system[J]. China Water & Waste Water, 2006(9):18-22.
[10] 郝晓明, 胡湛波, 刘成, 等. 南宁市竹排冲河道水体黑臭评价模型建立研究[J]. 华东师范大学学报(自然科学版), 2011(1):163-171.
Hao X M, Hu Z B, Liu C, et al. Development of a blcak-odour prediction model for Nanning zhupai creek[J]. Journal of East China Normal University (Natural Science), 2011(1):163-171.
[11] 魏文龙, 荆红卫, 徐谦, 等. 北京市城市河道水体发黑分级评价方法[J]. 环境化学, 2016,35(7):1532-1539.
Wei W L, Jing H W, Xu Q, et al. Grading assessment methods of urban creek’s blackening in Beijing[J]. Environmental Chenmistry, 2016,35(7):1532-1539.
[12] 魏文龙, 荆红卫, 张大伟, 等. 北京市城市河道水体发臭分级评价方法[J]. 环境化学, 2017,36(2):439-447.
Wei W L, Jing H W, Zhang D W, et al. Grading assessment methods of urban creek’s malodor in Beijing[J]. Environmental Chenmistry, 2017,36(2):439-447.
[13] 周岩, 董金玮. 陆表水体遥感监测研究进展[J]. 地球信息科学学报, 2019,21(11):1768-1778.
Zhou Y, Dong J W. Review on monitoring open surface water body using remote sensing[J]. Journal of Geo-Information Science, 2019,21(11):1768-1778.
[14] 叶虎平. 二类水体吸收系数精确校正及其遥感反演研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
Ye H P. A study on the accurate correction of case Ⅱ water absorption coefficient and its remote sensing inversion[D]. Beijing:University of Chinese Academy of Sciences(Cartography and Geographical Information System Institute of Remote Sensing and Digital Earth), 2017.
[15] 曹红业. 中国典型城市黑臭水体光学特性分析及遥感识别模型研究[D]. 成都:西南交通大学, 2017.
Cao H Y. Study on analysis of optical properties and remote sensing identifiable models of black and malodorous water in typical cities in China[D]. Chengdu:Southwest Jiaotong University, 2017.
[16] 纪刚. 基于遥感的黑臭水体识别方法研究及应用[D]. 兰州:兰州交通大学, 2017.
Ji G. Research and application on black and odorous water body by remote sensing[D]. Lanzhou:Lanzhou Jiaotong University, 2017.
[17] Zarco-Tejada P J, Pushnik J C, Dobrowski S, et al. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects[J]. Remote Sensing of Environment, 2003,84(2):283-294.
[18] Hoge F E, Vodacek A, Blough N V. Inherent optical properties of the ocean:Retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements[J]. Limnology and Oceanography, 1993,38(7):1394-1402.
[19] Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014(140):23-35.
[20] Mcfeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432.
[21] Xu H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006,27(14):3025-3033.
[22] 曹凯, 江南, 吕恒, 等. 面向对象的SPOT 5影像城区水体信息提取研究[J]. 国土资源遥感, 2007,( 2):27-30.doi: 10.6046/gtzyyg.2007.02.07.
Cao K, Jiang N, Lyu H, et al. The extraction of water information in urban areas based on SPOT5 mage using object-oriented method[J]. Remote Sensing for Land and Resources, 2007,( 2):27-30.doi: 10.6046/gtzyyg.2007.02.07.
[23] Dugan J, Piotrowski C, Williams J. Water depth and surface current retrievals from airborne optical measurements of surface gravity wave dispersion[J]. Journal of Geophysical Research:Oceans, 2001,106(C8):16903-15.
[24] 陈安娜. 适用于复杂环境的水深光学遥感新模型研究[D]. 青岛:自然资源部第一海洋研究所, 2019.
Chen A N. Research on novel model of optical remote sensing bathymetry for complex situations[D]. Qingdao:The First Institute of Oceanography, 2019.
[25] Harvey E T, Kratzer S, Philipson P. Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters[J]. Remote Sensing of Environment, 2015(158):417-430.
[26] Priyaa S S, Ga R. Retrieval of water quality parameters of South Andaman coral islands using remotely operated underwater vehicle[J]. Water Science, 2019,33(1):105-117.
[27] Zhang Y, Pulliainen J T, Koponen S S, et al. Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(3):622-629.
[28] 谢欢. 基于遥感的水质监测与时空分析[D]. 上海:同济大学, 2006.
Xie H. Remote sensing based water monitoring and spatial-temporal analysis[D]. Shanghai:Tongji University, 2006.
[29] Duan H, Ma R, Loiselle S A, et al. Optical characterization of black water blooms in eutrophic waters[J]. Science of the Total Enviroment, 2014(482-483):174-183.
[30] Hu C. The 2002 ocean color anomaly in the Florida Bight:A cause of local coral reef decline?[J]. Geophysical Research Letters, 2003,30(3):51-54.
[31] Kutser T, Paavel B, Verpoorter C, et al. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters[J]. Remote Sensing, 2016,8(6):497-511.
[32] Zhao J, Hu C, Lapointe B, et al. Satellite-observed black water events off southwest Florida:Implications for coral reef health in the Florida keys national marine sanctuary[J]. Remote Sensing, 2013,5(1):415-431.
[33] 李旭文, 牛志春, 姜晟, 等. 环境卫星CCD影像在太湖湖泛暗色水团监测中的应用[J]. 环境监控与预警, 2012,4(3):1-9.
Li X W, Niu Z C, Jiang S, et al. Remote sensing monitoring of black color water blooms in Lake Taihu based on HT Satellite CCD data[J]. Environmental Monitoring and Forewarning, 2012,4(3):1-9.
[34] 李旭文, 牛志春, 姜晟, 等. 太湖湖泛现象的卫星遥感监测[J]. 环境监测管理与技术, 2012,24(2):12-17.
Li X W, Niu Z C, Jiang S, et al. Satellite remote sensing monitoring of black color water blooms in Lake Taihu[J]. The Administrtion and Technique of Environmental Monitoring, 2012,24(2):12-17.
[35] 张思敏. 太湖黑水团水体光学特性及遥感监测研究[D]. 南京:南京师范大学, 2017.
Zhang S M. The study on optical properties and remote monitor of black water blooms[D]. Nanjing:Nanjing Normal University, 2017.
[36] 吴世红. 城市黑臭水体遥感监测关键技术研究进展[J]. 环境工程学报, 2019,13(6):1261-1271.
Wu S H. Research progress of remote sensing monitoring key technologies for urban black and odorous water bodies[J]. Chinese Journal of Environmental Engineering, 2019,13(6):1261-1271.
[37] 温爽, 王桥, 李云梅, 等. 基于高分影像的城市黑臭水体遥感识别:以南京为例[J]. 环境科学, 2018,39(1):57-67.
Wen S, Wang Q, Li Y M, et al. Remote sensing identification of urban black-odor water bodies based on high-resolution images:A case study in Nanjing[J]. Enviroment Science, 2018,39(1):57-67.
[38] 唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004,( 1):37-44.
Tian J W, Tian G L, Wang X Y, et al. The methods of water spectra measurement and analysis Ι:Above water method[J]. Journal of Remote Sensing, 2004,( 1):37-44
[39] 姚月, 申茜, 朱利, 等. 高分二号的沈阳市黑臭水体遥感识别[J]. 遥感学报, 2019,23(2):230-242.
Yao Y, Shen Q, Zhu L, et al. Remote sensing identification of urban black-odor water bodies in Shenyang City based on GF-2 image[J]. Journal of Remote Sensing, 2019,23(2):230-242.
[40] 占玲骅. 基于光学特性的城市黑臭水体识别模型研究[D]. 上海:华东师范大学, 2019.
Zhan L H. Study on recognition models of urban balck and odorous water bodies based on optical characteristcs[D]. Shanghai:East China Normal University, 2019.
[41] 李佳琦, 李家国, 朱利, 等. 太原市黑臭水体遥感识别与地面验证[J]. 遥感学报, 2019,23(4):773-784.
Li J Q, Li J G, Zhu L, et al. Remote sensing identification and validation of urban black and odorous water in Taiyuan City[J]. Journal of Remote Sensing, 2019,23(4):773-784.
[42] 温爽. 基于GF-2影像的城市黑臭水体遥感识别[D]. 南京:南京师范大学, 2018.
Wen S. Remote sensing recognition of urban black and odorous water bodies based on GF-2 images:A case study in Nanjing[D]. Nanjing:Nanjing Normal University, 2018.
[43] 李佐琛, 段洪涛, 申秋实, 等. 藻源性湖泛发生过程CDOM变化对水色的影响[J]. 湖泊科学, 2015,27(4):616-622.
Li Z C, Duan H T, Shen Q S, et al. The changes of water color induced by chromophoric dissolved organic matter(CDOM) during the formation of black blooms[J]. Journal of Lake Sciences, 2015,27(4):616-622.
[44] 李佐琛, 段洪涛, 张玉超, 等. 藻源型湖泛发生过程水色变化规律[J]. 中国环境科学, 2015,35(2):524-532.
Li Z C, Duan H T, Zheng Y C, et al. Variations in optical properties and water color during formation of black bloom waters:A laboratory experiment[J]. China Environment Science, 2015,35(2):524-532.
[45] 董舒. 基于色度法的点源污染远程图像水质分析监测方法研究[D]. 北京:北方工业大学, 2016.
Dong S. Research on remote image water quality analysis and monitoring method of point source pollution based on chromatictiy method[D]. Beijing:North China University of Technology, 2016.
[46] 卢燕南. 基于PlanetScope影像的城市黑臭水体遥感识别与分类研究[D]南宁:广西大学, 2019.
Lu Y N. Remote sensing recognition and classfication of urban black and odorous water body based on PlanetScope images[D]. Nanning:Guangxi University, 2019.
[47] Morel A. Optical properties of pure water and pure sea water[J]. Optical Aspects of Oceanography, 1974,1(1):1-24
[48] Pope R M, Fry E S. Absorption spectrum (380-700 nm) of pure waterII:Integrating cavity measurements[J]. Applied Optics, 1997,36(33):8710-8723.
doi: 10.1364/ao.36.008710 pmid: 18264420
[49] 张红, 黄家柱, 李云梅, 等. 滇池水体光学物质的吸收特性研究[J]. 环境科学, 2011,32(2):452-463.
Zhang H, Huang J Z, Li Y M, et al. Spectral absorption coefficients of optically active substances in Lake Dianchi[J]. Environmental Science, 2011,32(2):452-463.
[50] 石亮亮. 基于遥感与实测资料的水体固有光学量及CDOM反演研究[D]. 杭州:浙江大学, 2019.
Shi L L. Retrieval of inherent optical properties and chromophoric dissolved organic matter based on remote sensing and in situ observations[D]. Hangzhou:Zhejiang University 2019.
[51] 刘忠华, 李云梅, 吕恒, 等. 太湖春季水体固有光学特性及其对遥感反射率变化的影响[J]. 生态学报, 2012,32(2):438-447.
Liu Z H, Li Y M, Lyu H, et al. Analysis of inherent optical properties of Lake Taihu in spring and its influrnce on the change of remote sensing reflectance[J]. Acta Ecologica Sinica, 2012,32(2):438-447.
[52] 黄昌春, 李云梅, 孙德勇, 等. 太湖水体散射光谱特性及其形成机理研究[J]. 光学学报, 2011,31(5):23-31.
Huang C C, Li Y M, Sun D Y, et al. Research of scattering spectrum characteristic and formative mechanism of Taihu Lake waters[J]. Acta Optica Sinica, 2011,31(5):23-31.
[53] 丁潇蕾. 基于水体吸收系数的城市黑臭水体遥感识别与分级方法研究[D]. 南京:南京师范大学, 2019.
Ding X L. Study on remote sensing identification and classification of urban black and odor water based on water absorption coefficient[D]. Nanjing:Nanjing Normal University, 2019.
[54] 丁潇蕾, 李云梅, 吕恒, 等. 城市黑臭水体的吸收特性分析[J]. 环境科学, 2018,39(10):4519-4529.
Ding X L, Li Y M, Lyu H, et al. Analysis of absorption characteristics of urban black-odor water[J]. Environmental Science, 2018,39(10):4519-4529.
[55] 张雪, 赖积保, 李家国, 等. 基于高分一号影像的深圳市黑臭水体遥感识别[J]. 科学技术与工程, 2019,19(4):268-274.
Zhang X, Lai J B, Li J G, et al. Remote sensing recohnition of black-odor waterbodies in Shengzhen City based on GF-1 satellite[J]. Science Technology and Engineering, 2019,19(4):268-274.
[56] 申茜, 朱利, 曹红业. 城市黑臭水体遥感监测与筛查研究进展[J]. 应用生态学报, 2017,28(10):3433-3439.
Shen Q, Zhu L, Cao H Y. Remote sensing monitoring and screening for urban black and odorous water body:A review[J]. Chinese Journal of Applie Ecology, 2017,28(10):3433-3439.
[57] 李正强, 陈兴峰 马 , 等. 光学遥感卫星大气校正研究综述[J]. 南京信息工程大学学报(自然科学版), 2018,10(1):6-15.
Li Z Q, Chen X F, Mao Y, et al. An onverview of atmospheric correction for optical remote sensing satellites[J]. Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2018,10(1):6-15.
[58] Kotchenova S Y, Vermote E F, Matarrese R, et al. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data.Part I:Path radiance[J]. Applied Optics, 2006,45(26):6762-6774.
doi: 10.1364/ao.45.006762 pmid: 16926910
[59] Vermote E F, Tanré D, Deuze J L, et al. Second simulation of the satellite signal in the solar spectrum,6S:An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(3):675-686.
[60] Berk A, Conforti P, Kennett R, et al. MODTRAN®6:A major upgrade of the MODTRAN®radiative transfer code [C]// 2014 6th Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing(WHISPERS).IEEE, 2014.
[61] Cooley T, Anderson G P, Felde G W, et al. FLAASH,a MODTRAN4-based atmospheric correction algorithm,its application and validation[C]// International Geoscience and Remote Sensing Symposium.IEEE, 2002.
[62] 汤玉明, 邓孺孺, 刘永明, 等. 大气气溶胶遥感反演研究综述[J]. 遥感技术与应用, 2018,33(1):25-34.
Tang Y M, Deng R R, Liu Y M, et al. Research review of remote sensing for atmospheric aerosol retrieval[J]. Remote Sening Technolohy and Application, 2018,33(1); 25-34.
[63] 王中挺, 厉青, 王桥, 等. 利用深蓝算法从HJ-1数据反演陆地气溶胶[J]. 遥感学报, 2012,16(3):596-610.
Wang Z T, Li Q, Wang Q, et al. HJ-1 terrestrial aerosol data retrieval using deep blue algorithm[J]. Journal of Remote Sensing, 2010,16(3):596-610.
[64] Gordon H R, Wand M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS:A preliminary algorithm[J]. Applied Optics, 1994,33(3):443-452.
doi: 10.1364/AO.33.000443 pmid: 20862036
[65] Ruddick K G, Ovidio F, Rijkeboer M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Applied Optics, 2000,39(6):897-912.
pmid: 18337965
[66] 孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020,24(5):479-510.
Sun W W, Yang G, Chen C, et al. Development status and literature analysis of China’s earth observation remote sensing satellites[J]. Journal of Remote Sensing(Chinese), 2020,24(5):479-510.
[67] 彭令, 梅军军, 王娜, 等. 工矿业城市区域水质参数高光谱定量反演[J]. 光谱学与光谱分析, 2019,39(9):2922-2928.
Peng L, Mei J J.Wang N, et al. Quantitative inversion of water quality parameters in industrial and mining cites from hyperspectral remote sensing[J]. Spectroscopy and Spectral Analysis, 2019,39(9):2922-2928.
[68] 申茜, 张兵, 李俊生, 等. 太湖水体反射率的光谱特征波长分析[J]. 光谱学与光谱分析, 2011,31(7):1892-1897.
doi: 10.3964/j.issn.1000-0593(2011)07-1892-06 pmid: 21942046
Shen Q, Zhang B, Li J S, et al. Characteristic wavelengths analysis for remote sensing reflectance on water surface in Taihu Lake[J]. Spectroscopy and Spectral Analysis, 2011,31(7):1892-1897.
doi: 10.3964/j.issn.1000-0593(2011)07-1892-06 pmid: 21942046
[69] 郭一洋. 基于光学分类的太湖藻蓝蛋白反演[D]. 阜新:辽宁工程技术大学, 2016.
Guo Y Y. Retrieval of phycocyanin concentrations based on water reflrctance spectra classification in Taihu Lake[D]. Fuxin:Liaoning Technical University, 2016.
[70] 郭一洋, 朱利, 吴传庆, 等. 基于水面反射率光谱分类的太湖藻蓝蛋白浓度反演[J]. 环境科学学报, 2016,36(8):2905-2910.
Guo Y Y, Zhu L, Wu C Q, et al. The retrieval of phycocyanin concentrations in Taihu Lake based on water reflectance spectra classification[J] Acta Scientiae Circumstantiae, 2016,36(8):2905-2910.
[71] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
Zhou Z H. Machine learning[M]. Beijing: Tsinghua University Press. 2016.
[72] Kim Y H, Im J, Ha H K, et al. Machine learning approaches to coastal water quality monitoring using GOCI satellite data[J]. GIScience & Remote Sensing, 2014,51(2):158-174.
[73] 孙驷阳. 基于多源遥感与机器学习的密云水库水质参数反演研究[D]. 北京:北京林业大学, 2019.
Sun S Y. Inversion of water quality parameters of miyun reservoir based on multi-source remote densing and machine learning[D]. Beijing:Beijing Forestry University, 2019.
[1] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[2] 唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
[3] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[4] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[5] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[6] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[7] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[8] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[9] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[10] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[11] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[12] 马世斌, 皮英楠, 王佳, 张焜, 李生辉, 彭玺. 基于遥感的绿色勘查高效监管方法体系研究[J]. 自然资源遥感, 2023, 35(2): 255-263.
[13] 王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
[14] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[15] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发