Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (1): 54-62    DOI: 10.6046/gtzyyg.2020069
     技术方法 本期目录 | 过刊浏览 | 高级检索 |
城市绿地资源多尺度监测与评价方法探讨
熊育久1,2(), 赵少华3, 鄢春华4, 邱国玉4, 孙华5,6,7, 王艳林8, 秦龙君4()
1.中山大学土木工程学院,广州 510275
2.广东省华南地区水安全调控工程技术研究中心,广州 510275
3.生态环境保护部卫星环境应用中心/国家环境保护卫星遥感重点实验室,北京 100094
4.北京大学深圳研究生院环境与能源学院,深圳 518055
5.中南林业科技大学林业遥感信息工程研究中心,长沙 410004
6.林业遥感大数据与生态安全湖南省重点实验室,长沙 410004
7.南方森林资源经营与监测国家林业与草原局重点实验室,长沙 410004
8.广州市规划和自然资源局,广州 510000
A comparative study of methods for monitoring and assessing urban green space resources at multiple scales
XIONG Yujiu1,2(), ZHAO Shaohua3, YAN Chunhua4, QIU Gouyu4, SUN Hua5,6,7, WANG Yanlin8, QIN Longjun4()
1. School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China
2. Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Guangzhou 510275, China
3. Satellite Environment Center, Ministry of Ecology and Environment/State Environmental Protection Key Laboratory of Satellite Remote Sensing, Beijing 100094, China
4. School of Environment and Energy, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
5. Research Center of Forestry Remote Sensing & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
6. Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province, Changsha 410004, China
7. Key Laboratory of State Forestry & Grassland Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China
8. Guangzhou Municipal Planning and Natural Resources Bureau, Guangzhou 510000, China
全文: PDF(4697 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

绿地是城市生态资源的重要组成部分,定量评估其时空分布、构建多尺度监测方法体系,是自然资源管理、生态文明城市建设等领域的迫切需求。以城市植被和城市水体为例,从资源的数量、质量与生态价值3个层次,梳理对比主流的监测评价方法,探讨这些方法的优势与存在的问题,为我国新时期城市自然资源评估与监测提供方法参考。结果表明: ①尽管基于样方的传统抽样方法可获得城市绿地的数量信息,但城市绿地高度斑块化特征限制了样方结果尺度推绎; ②卫星遥感是监测城市绿地的有效手段,可准确获取绿地空间分布、面积、种类、质量变化等信息,但生物量(或蓄积量)、体积等信息需要米级(< 5 m)遥感数据和其他新技术支持精细化研究; ③无人机可获得亚米级(如< 5 cm)数据,满足精细化监测需求,但受飞行管制、电池续航能力等限制,数据覆盖范围有限,且数据拼接等后处理复杂、传统的数据处理或反演算法可能不适用于亚米级空间分辨率数据; ④城市绿地对城市热环境调节功能研究较多,但当前100 m(及更粗空间分辨率)的热红外地表温度数据难以支持绿地蒸腾降温机理等精细化研究。可见,城市绿地的精细化资源评估与监测仍面临诸多挑战。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊育久
赵少华
鄢春华
邱国玉
孙华
王艳林
秦龙君
关键词 自然资源城市绿地评估与监测遥感无人机    
Abstract

Urban green spaces are important ecological resources in cities; therefore, quantitative assessment of these green space resources as well as establishment of monitoring system at multiple scales is urgently required for assisting natural resources management and eco-city construction. The objectives of this study are to summarize major methods used to assess and monitor two typical urban green space resources, i.e., vegetation and water bodies, in terms of quantity, quality, and ecosystem service value, and to discuss advantage and disadvantage of these methods. Some results have been obtained: ① Although traditional sampling methods can obtain quantitative information for urban vegetation, fragmentation and patch of urban vegetation has limited scaling such information to larger scales; ② Satellite remote sensing (RS), which can provide information such as spatial distribution, area, vegetation classification, and water quality, is an effective method to assess and monitor urban green spaces; nonetheless, detailed information, such as biomass and water volume, requires high spatial resolution (e.g., < 5 m) RS data as well as corresponding methods to process the data; ③ Unmanned aerial vehicle (UAV) can provide land surface information at high spatial resolution (e.g., < 5 cm); however, UAV has limitations, such as limited data coverage and challenged data processing; ④ Lots of studies focus on the relationship between urban green spaces and urban heat islands, but the mechanism, i.e., how much energy is consumed by evapotranspiration and its impact on cooling effect, is less focused, which is likely due to a relatively low spatial resolution of available thermal infrared RS data. In summary, there are still lots of challenges in assessing and monitoring nature resources, including urban green spaces.

Key wordsnatural resources    urban green space    assessment and monitoring    remote sensing    unmanned aerial vehicle (UAV)
收稿日期: 2020-03-20      出版日期: 2021-03-18
ZTFLH:  TP79  
基金资助:深圳市技术攻关项目“飞行智能环境监测机器人研究”(JCYJ20180504165440088);国家自然科学基金项目“干旱区绿洲与荒漠植被蒸散发及其组分定量遥感反演研究”共同资助(41671416)
通讯作者: 秦龙君
作者简介: 熊育久(1982-),男,博士,副教授,主要从事资源与环境遥感方面的研究。Email: xiongyuj@mail.sysu.edu.cn
引用本文:   
熊育久, 赵少华, 鄢春华, 邱国玉, 孙华, 王艳林, 秦龙君. 城市绿地资源多尺度监测与评价方法探讨[J]. 国土资源遥感, 2021, 33(1): 54-62.
XIONG Yujiu, ZHAO Shaohua, YAN Chunhua, QIU Gouyu, SUN Hua, WANG Yanlin, QIN Longjun. A comparative study of methods for monitoring and assessing urban green space resources at multiple scales. Remote Sensing for Land & Resources, 2021, 33(1): 54-62.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020069      或      https://www.gtzyyg.com/CN/Y2021/V33/I1/54
Fig.1  城市绿地资源不同层次评价与监测方法
Fig.2  三维激光雷达调查评估城市植被方法示例
传感器 卫星平台 幅宽/
km
空间分
辨率/m
时间分
辨率
TM Landsat(美国) 185 120 16 d
ETM+ 60
OLI 100
ASTER Terra(美国) 60 90 9~16 d
IRMSS CBERS-01/02(中国) 120 156 26 d
IRS HJ-1B(中国) 720 300 4 d
VIIRS NPP(美国) 3 000 400 4 h
MODIS Terra/Aqua(美国) 2 330 1 000 1 d
AVHRR NOAA(美国) 2 800 1 100 0.5 d
SEVIRI MSG(欧盟) 全球 3 000 15 min
SVISSR FY-2(中国) 全球 5 000 1 h
Tab.1  典型的卫星热红外遥感数据
Fig.3  基于ASTER AG100v003产品的广州市海珠区2000—2008年平均地表温度空间分布
Fig.4  基于车载(电动摩托车)移动式的运动样带城市绿地类型与温度关系研究方法
(运动样带位于广东省深圳市南山区大学城)
Fig.5  基于无人机与热红外遥感的城市绿地蒸腾作用与地表温度关系研究
(研究区位于图4(b)东北局部区域,观测时间为2019年11月7日12时)
Fig.6  基于Landsat TM/ETM+遥感数据的水质遥感多时间序列监测评估示 例: 广东省珠海市大镜山水库叶绿素a浓度时空分布图
[1] United Nations, Department of Economic and Social Affairs, Population Division. World urbanization prospects 2018:Highlights[EB/OL].[2018-11-27]. https://www.un.org/development/desa/pd/content/world-urbanization-prospects-2018-highlights
[2] Bai X, Shi P, Liu Y. Realizing China’s urban dream[J]. Nature, 2014,509:158-160.
pmid: 24812683
[3] Coumou D, Robinson A. Historic and future increase in the global land area affected by monthly heat extremes[J]. Environmental Research Letters, 2013,8:034018.
[4] Sun X, Sun Q, Zhou X, et al. Heat wave impact on mortality in Pudong New Area,China in 2013[J]. Science of the Total Environment, 2014,493:789-794.
[5] 张玉林. 中国的城市化与生态环境问题——“2018中国人文社会科学环境论坛”研讨述评[J]. 南京工业大学学报(社会科学版), 2019,18(1):1-10.
Zhang Y L. Urbanization in China and its eco-environmental effects:a review on the discussion of “2018 Chinese humanities and social sciences environment forum”[J]. Journal of Nanjing Tech University (Social Science Edition), 2019,18(1):1-10.
[6] Haase D, Larondelle N, Andersson E, et al. A quantitative review of urban ecosystem service assessments:Concepts,models,and implementation[J]. AMBIO(43):413-433.
[7] 张云路, 李雄. 基于供给侧的城市绿地系统规划新思考[J]. 中国城市林业, 2017,15(1):1-4.
Zhang Y L, Li X. New thought on urban green space system planning based on the perspective of supply side[J]. Journal of Chinese Urban Forestry, 2017,15(1):1-4.
[8] 韩依纹, 戴菲. 城市绿色空间的生态系统服务功能研究进展:指标、方法与评估框架[J]. 中国园林, 2018,34(10):55-60.
Han Y W, Dai F. Review of study on ecosystem services function of urban green spaces:Indicators,methods and assessment framework[J]. Chinese Landscape Architecture, 2018,34(10):55-60.
[9] 李鑫, 马晓冬, 薛小同, 等. 城市绿地空间供需评价与布局优化——以徐州中心城区为例[J]. 地理科学, 2019,39(11):1771-1779.
Li X, Ma X D, Xue X T, et al. Spatial supply-demand evaluation and layout optimization for urban green space:A case study of Xuzhou central district[J]. Scientia Geographica Sinica, 2019,39(11):1771-1779.
[10] 邱国玉, 张晓楠. 21世纪中国的城市化特点及其生态环境挑战[J]. 地球科学进展, 2019,34(6):640-649.
Qiu G Y, Zhang X N. China’s urbanization and its ecological environment challenges in the 21st century[J]. Advances in Earth Science, 2019,34(6):640-649.
[11] 赵少华, 刘思含, 刘芹芹, 等. 中国城镇生态环境遥感监测现状及发展趋势[J]. 生态环境学报, 2019,28(6):1261-1271.
Zhao S H, Liu S H, Liu Q Q, et al. Progress of urban ecological environment monitoring by remote sensing in China[J]. Ecology and Environmental Sciences, 2019,28(6):1261-1271.
[12] 叶远智, 张朝忙, 邓轶, 等. 我国自然资源、自然资源资产监测发展现状及问题分析[J]. 测绘通报, 2019(10):23-29.
Ye Y Z, Zhang C M, Deng Y, et al. Research on the current situation and problems of natural resources monitoring and natural resources assets monitoring in China[J]. Bulletin of Surveying and Mapping, 2019(10):23-29.
[13] Grimm N B, Faeth S H, Golubiewski N E, et al. Global change and the ecology of cities[J]. Science, 2008(319):756-760.
[14] 赵娟娟, 欧阳志云, 郑华, 等. 城市植物分层随机抽样调查方案设计的方法探讨[J]. 生态学杂志, 2009,28(7):1430-1436.
Zhao J J, Ouyang Z Y, Zheng H, et al. Proposed procedure in designing and planning stratified random selection investigation of urban vegetation[J]. Chinese Journal of Ecology, 2009,28(7):1430-1436.
[15] Yin J, Yang J. Effects of sampling approaches on quantifying urban forest structure[J]. Landscape and Urban Planning, 2020(195):103722.
[16] 王芳, 卓莉, 黎夏, 等. 基于高光谱特征选择和RBFNN的城市植被胁迫程度监测[J]. 地理科学, 2008(1):77-82.
Wang F, Zhuo L, Li X, et al. Urban vegetation stress level monitoring based on hyperspectral feature selection and RBF neural network[J]. Scientia Geographica Sinica, 2008(1):77-82.
[17] 潘灼坤, 王芳, 夏丽华, 等. 高光谱遥感城市植被胁迫监测研究[J]. 遥感技术与应用, 2012,27(1):68-76.
Pan Z K, Wang F, Xia L H, et al. Research on urban vegetation stress monitoring by hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 2012,27(1):68-76.
[18] Scott C T. Sampling methods for estimating change in forest resources[J]. Ecological Applications, 1998,8:228-233.
[19] 史京京, 雷渊才, 赵天忠. 森林资源抽样调查技术方法研究进展[J]. 林业科学研究, 2009,22(1):101-108.
Shi J J, Lei Y C, Zhao T Z. Progress in sampling technology and methodology in forest inventory[J]. Forest Research, 2009,22(1):101-108.
[20] He F, Hubbell S. Species-area relationships always overestimate extinction rates from habitat loss[J]. Nature, 2011(473):368-371.
[21] 梁顺林, 白瑞, 陈晓娜, 等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报, 2020,24(6):618-671.
Liang S L, Bai R, Chen X N, et al. Review of China’s land surface quantitative remote sensing development in 2019[J]. Journal of Remote Sensing, 2020,24(6):618-671.
[22] Pause M, Schweitzer C, Rosenthal M, et al. In situ/remote sensing integration to assess forest health:A review[J]. Remote Sensing, 2016(8):471.
[23] Wulder M. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters[J]. Progress in Physical Geography, 1998,22(4):449-476.
[24] Mo D, Fuchs H, Fehrmann L, et al. Local parameter estimation of topographic normalization for forest type classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015(12):1998-2002.
[25] Lausch A, Erasmi S, King D J, et al. Understanding forest health with remote sensing Part I:A review of spectral traits,processes and remote-sensing characteristics[J]. Remote Sensing, 2016(8):1029.
[26] 肖银松. “3S”及抽样技术在森林资源动态监测中的应用[J]. 西南林学院学报, 2004(2):60-64.
Xiao Y S. Application of “3S” technology and sampling techniques to dynamic monitoring of forest resources[J]. Journal of Southwest Forestry College, 2004(2):60-64.
[27] 李士成, 何凡能, 张学珍. 中国历史时期森林空间格局网格化重建方法研究——以东北地区为例[J]. 地理学报, 2014,69(3):312-322.
Li S C, He F N, Zhang X Z. An approach of spatially-explicit reconstruction of historical forest in China:A case study in Northeast China[J]. Acta Geographica Sinica, 2014,69(3):312-322.
[28] 姜洋, 李艳. 浙江省森林信息提取及其变化的空间分布[J]. 生态学报, 2014,34(24):7261-7270.
Jiang Y, Li Y. The extraction of forest information and the spatial distribution of its change in Zhejiang Province[J]. Acta Ecologica Sinica, 2014,34(24):7261-7270.
[29] Toth C, Jóźków G. Remote sensing platforms and sensors:A survey[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016(115):22-36.
[30] 林辉, 吕勇, 宁晓波. 基于高分辨率卫星图像的立木材积表的编制[J]. 林业科学, 2004,40(4):33-39.
Lin H, Lyu Y, Ning X B. Compiling the standing volume table of Chinese fir based on the high-resolution satellite image[J]. Scientia Silvae Sinicae, 2004,40(4):33-39.
[31] 张友静, 樊恒通. 城市植被尺度鉴别与分类研究[J]. 地理与地理信息科学, 2007(6):54-57.
Zhang Y J, Fan H T. Scale identification for urban vegetation classification using high spatial resolution satellite data[J]. Geography and Geo-Information Science, 2007(6):54-57.
[32] 陈利, 林辉, 孙华. 基于WorldView-2影像城市绿地信息提取研究[J]. 西北林学院学报, 2014,29(1):155-160.
Chen L, Lin H, Sun H. WorldView-2 images based urban green space information extraction[J]. Journal of Northwest Forestry university, 2014,29(1):155-160.
[33] Mora B, Wulder M A, White J C. Segment-constrained regression tree estimation of forest stand height from very high spatial resolution panchromatic imagery over a boreal environment[J]. Remote Sensing Environment, 2010(114):2474-2484.
[34] Lim K, Treitz P, Wulder M, et al. LiDAR remote sensing of forest structure[J]. Progress in Physical Geography:Earth and Environment, 2003(27):88-106.
[35] Sun H, Wang G, Lin H, et al. Retrieval and accuracy assessment of tree and stand parameters for Chinese fir plantation using terrestrial laser scanning[J]. IEEE Geoscience and Remote Sensing Letter, 2015(12):1993-1997.
[36] Iglhaut J, Cabo C, Puliti S, et al. Structure from motion photogrammetry in forestry:A review[J]. Current Forestry Reports, 2019,5(3):155-168.
doi: 10.1007/s40725-019-00094-3
[37] Novo A, González-Jorge H, Martínez-Sánchez J, et al. Canopy detection over roads using mobile LiDAR data[J]. International Journal of Remote Sensing, 2020(41):51927-51942.
[38] 郭庆华, 刘瑾, 李玉美, 等. 生物多样性近地面遥感监测:应用现状与前景展望[J]. 生物多样性, 2016,24(11):1249-1266.
Guo Q H, Liu J, Li Y M, et al. A near-surface remote sensing platform for biodiversity monitoring:Perspectives and prospects[J]. Biodiversity Science, 2016,24(11):1249-1266.
doi: 10.17520/biods.2016059
[39] 蒋高明. 城市植被:特点、类型与功能[J]. 植物学通报, 1993(3):21-27.
Jiang G M. Urban vegetation:Its characteristic,type and function[J]. Chinese Bulletin Botany, 1993(3):21-27.
[40] 邱媛, 管东生, 宋巍巍, 等. 惠州城市植被的滞尘效应[J]. 生态学报, 2008(6):2455-2462.
Qiu Y, Guan D S, Song W W, et al. The dust retention effect of urban vegetation in Huizhou,Guangdong Province[J]. Acat Ecologica Sinica, 2008(6):2455-2462.
[41] Qiu G Y, Zou Z, Li X, et al. Experimental studies on the effects of green space and evapotranspiration on urban heat island in a subtropical megacity in China[J]. Habitat International, 2017(68):30-42.
[42] Qiu G Y, Tan S, Wang Y, et al. Characteristics of evapotranspiration of urban lawns in a sub-tropical megacity and its measurement by the “Three Temperature Model + infrared remote sensing” method[J]. Remote Sensing, 2017(9):502.
[43] Zou Z D, Yang Y J, Qiu G Y. Quantifying the evapotranspiration rate and its cooling effects of urban hedges based on Three-Temperature model and infrared remote sensing[J]. Remote Sensing, 2019(11):202.
[44] Bowler D E, Buyung-Ali L, Knight T M, et al. Urban greening to cool towns and cities:A systematic review of the empirical evidence[J]. Landscape and Urban Planning, 2010,97(3):147-155.
[45] Stewart I, Oke T. Local climate zones for urban temperature studies[J]. Bulletin of the American Meteorological Society, 2012,93(12):1879-1900.
[46] Yang J, Pyrgou A, Chong A, et al. Green and cool roofs’ urban heat island mitigation potential in tropical climate[J]. Solar Energy, 2018(173):597-609.
[47] Oke T. City size and the urban heat island[J]. Atmospheric Environment, 1973,7(8):769-779.
[48] Meehl G A, Tebaldi C. More intense,more frequent,and longer lasting heat waves in the 21st century[J]. Science, 2004(305):994-997.
[49] Guerreiro S, Dawson R, Kilsby C, et al. Future heat-waves,droughts and floods in 571 European cities[J]. Environmental Research Letters, 2018,13(3):034009.
[50] Oleson K, Anderson G, Jones B, et al. Avoided climate impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5[J]. Climatic Change, 2018(146):377-392.
[51] 秦大河. 气候变化科学与人类可持续发展[J]. 地理科学进展, 2014,33(7):874-883.
Qin D H. Climate change science and sustainable development[J]. Progress in Geography, 2014,33(7):874-883.
[52] Grimmond C, Oke T. An evapotranspiration-interception model for urban areas[J]. Water Resources Research, 1991,27(7):1739-1755.
[53] Qiu G Y, Yu X H, Wen H Y, et al. An advanced approach for measuring the transpiration rate of individual urban trees by the 3D three-temperature model and thermal infrared remote sensing[J]. Journal of Hydrology, 2020(587):125034.
[54] Wang K, Dickinson R. A review on global terrestrial evapotranspiration:Observation,modeling,climatology,and climatic variability[J]. Reviews of Geophysics, 2012(50):569.
[55] Zhang K, Kimball J, Running S. A review of remote sensing based actual evapotranspiration estimation[J]. Wiley Interdisciplinary Reviews-Water, 2016(3):834-853.
[56] 杨大文, 徐宗学, 李哲, 等. 水文学研究进展与展望[J]. 地理科学进展, 2018,37(1):36-45.
Yang D W, Xu Z X, Li Z, et al. Progress and prospect of hydrological sciences[J]. Progress in Geography, 2018,37(1):36-45.
[57] 陈发虎, 傅伯杰, 夏军, 等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学:地球科学, 2019,49(11):1659-1696.
Chen F H, Fu B J, Xia J, et al. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects[J]. Science China Earth Sciences, 2019,49(11):1659-1696.
[58] Pataki D McCarthy H Litvak E, et al. Transpiration of urban forests in the Los Angeles metropolitan area[J]. Ecological Applications, 2011(21):661-677.
[59] 王晓娟, 孔繁花, 尹海伟, 等. 高温天气植被蒸腾与遮荫降温效应的变化特征[J]. 生态学报, 2018,38(12):4234-4244.
Wang X J, Kong F H, Yin H W, et al. Characteristics of vegetation shading and transpiration cooling effects during hot summer[J]. Acat Ecologica Sinica, 2018,38(12):4234-4244.
[60] Segovia-Cardozo D, Rodríguez-Sinobas L, Zubelzu S. Living green walls:Estimation of water requirements and assessment of irrigation management[J]. Urban Forestry & Urban Greening, 2019(46):126458.
[61] van de Wouw P, Brouwers H. Precipitation collection and evapo(transpi)ration of living wall systems:A comparative study between a panel system and a planter box system[J]. Building and Environment, 2017(126):221-237.
[62] Costello L, Matheny N, Clark J, et al. A guide to estimating irrigation water needs of landscape plantings in California[R]. University of California Cooperative Extension,California Department of Water Resources, 2000.
[63] Azeñas V, Janner I, Medrano H, et al. Performance evaluation of five Mediterranean species to optimize ecosystem services of green roofs under water-limited conditions[J]. Journal of Environmental Management, 2018(212):236-247.
[64] Rana G, De Lorenzi F, Mazza G, et al. Tree transpiration in a multi-species Mediterranean garden[J]. Agricultural and Forest Meteorology, 2020(280):107767.
[65] Li Z, Tang B, Wu H, et al. Satellite-derived land surface temperature:Current status and perspectives[J]. Remote Sensing of Environment, 2013(131):14-37.
doi: 10.1016/j.rse.2012.12.008
[66] Chen X, Su Y, Li D, et al. Study on the cooling effects of urban parks on surrounding environments using Landsat TM data:A case study in Guangzhou,southern China[J]. International Journal of Remote Sensing, 2012(33):5889-5914.
doi: 10.1080/01431161.2012.676743
[67] Feyisa G, Dons K, Meilby H. Efficiency of parks in mitigating urban heat island effect:An example from Addis Ababa[J]. Landscape and Urban Planning, 2014(123):87-95.
doi: 10.1016/j.landurbplan.2013.12.008
[68] Cong Z, Shen Q, Zhou L, et al. Evapotranspiration estimation considering anthropogenic heat based on remote sensing in urban area[J]. Science China Earth Sciences, 2017(60):659-671.
[69] Jiang Y, Weng Q. Estimation of hourly and daily evapotranspiration and soil moisture using downscaled LST over various urban surfaces[J]. GIScience & Remote Sensing, 2017,54(1):95-117.
[70] Liu W, Hong Y, Khan S, et al. Actual evapotranspiration estimation for different land use and land cover in urban regions using Landsat 5 data[J]. Journal of Applied Remote Sensing, 2010(4):041873.
[71] 张敏霞, 梅丹英, 高伟俊, 等. 无人机遥感技术在城市绿地监测中的应用进展[J]. 中国城市林业, 2019,17(5):5-11.
Zhang M X, Mei D Y, Gao W J, et al. Review on the applications of UAV remote sensing technology to urban green space monitoring[J]. Journal of Chinese Urban Forestry, 2019,17(5):5-11.
[72] Mouw C, Greb S, Aurin D, et al. Aquatic color radiometry remote sensing of coastal and inland waters:Challenges and recommendations for future satellite missions[J]. Remote Sensing of Environment, 2015(160):15-30.
[73] Xiong Y, Ran Y, Zhao S, et al. Remotely assessing and monitoring coastal and inland water quality in China:Progress,challenges and outlook[J]. Critical Reviews in Environmental Science and Technology, 2019,50(12), 1266-1302.
[74] 中华人民共和国水利部, 中华人民共和国国家统计局. 第一次全国水利普查公报[M]. 北京: 中国水利水电出版社, 2013: 3.
Ministry of Water Resources of the People’s Republic of China, National Bureau of Statistics of the People’s Republic of China. Bulletin of first National Census for Water[M]. Beijing: China Water and Power Press, 2013: 3.
[1] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[2] 胡晨霞, 邹滨, 梁玉, 贺晨骋, 林治家. 高空间分辨率生态系统生产总值时空演化分析——以2000—2020年湖南省为例[J]. 自然资源遥感, 2023, 35(3): 179-189.
[3] 唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
[4] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[5] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[6] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[7] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[8] 王振华, 谭智联, 李静, 常英立. Re-YOLOX: 利用Resizer改进的YOLOX近岸海域监测目标识别模型[J]. 自然资源遥感, 2023, 35(3): 10-16.
[9] 陈凯, 王春, 代文, 盛业华, 刘爱利, 汤国安. 基于控制点蒙特卡罗检验的无人机地形建模精度影响因素研究[J]. 自然资源遥感, 2023, 35(3): 107-115.
[10] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[11] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[12] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[13] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[14] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[15] 马世斌, 皮英楠, 王佳, 张焜, 李生辉, 彭玺. 基于遥感的绿色勘查高效监管方法体系研究[J]. 自然资源遥感, 2023, 35(2): 255-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发