Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 75-84    DOI: 10.6046/gtzyyg.2020289
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于多层次感知网络的GF-2遥感影像建筑物提取
卢麒1(), 秦军1, 姚雪东2, 吴艳兰1,3(), 朱皓辰1
1.安徽大学资源与环境工程学院,合肥 230601
2.武汉大学测绘遥感信息工程国家重点实验室,武汉 430072
3.安徽省地理信息智能技术工程研究中心,合肥 230601
Buildings extraction of GF-2 remote sensing image based on multi-layer perception network
LU Qi1(), QIN Jun1, YAO Xuedong2, WU Yanlan1,3(), ZHU Haochen1
1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan 430072, China
3. Anhui Engineering Research Center for Geographical Information Intelligent Technology, Hefei 230601, China
全文: PDF(9566 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高分辨率遥感影像建筑物提取任务在城市规划、城镇化进程等领域发挥着重要作用。针对现有的深度学习提取方法存在浅层特征未得到有效利用、小目标信息容易丢失等问题,提出了一种多层次感知网络。该网络利用密集连接机制充分提取特征信息,并构建平行结构保留不同特征分辨率的空间信息,增强不同深度、尺度特征信息,减少细节特征的丢失; 同时利用空洞空间金字塔模块获取不同感受野信息,提取不同尺度下的深层建筑特征。实验结果表明,该方法在GF-2遥感影像建筑物提取中,总体精度为97.19%、交并比为74.33%、综合评价指标为85.43%,各指标均高于传统方法与其他深度学习方法; 此外,应对多源遥感影像的建筑物仍具有良好的提取效果,体现了本文方法的实用性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢麒
秦军
姚雪东
吴艳兰
朱皓辰
关键词 深度学习遥感影像建筑物提取多尺度特征融合    
Abstract

The task of extracting buildings with high-resolution remote sensing image plays an important role in urban planning and urbanization. In view of the problems of existing deep learning extraction methods, for example, the shallow features can’t been used effectively and small target information is easily lost, this paper proposes a multi-level perceptual network. This network uses dense connection mechanism to fully extract feature information, and constructs parallel structure to retain spatial information of different feature resolution and enhance feature information of different depth and scale in order to reduce the loss of detail feature. At the same time, the ASPP module is used to obtain the information of different receptive fields and extract the deep architectural features at different scales. The experimental results show that the overall accuracy of the proposed method is 97.19%, intersection over union is 74.33% and theF1 score is 85.43% in the buildings extraction of GF-2 remote sensing image, all of which are higher than those of the traditional method and other deep learning methods. In addition, buildings with multi-source remote sensing images still have good extraction effect, which reflects the practicability of the method presented in this paper.

Key wordsdeep learning    remote sensing images    building extraction    multiscale feature fusion
收稿日期: 2020-09-15      出版日期: 2021-07-21
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“支持多特征整合视觉注意机制的倾斜摄影点云分类深度学习方法”(41971311);安徽省科技重大专项项目“多平台区域大气污染物网格化监测系统关键技术研究及示范应用”(18030801111)
通讯作者: 吴艳兰
作者简介: 卢麒(1995-),女,硕士研究生,主要从事遥感卫星信息处理及应用研究。Email: luqi9507@163.com
引用本文:   
卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
LU Qi, QIN Jun, YAO Xuedong, WU Yanlan, ZHU Haochen. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020289      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/75
Fig.1  网络结构流程
Fig.2  包含3个卷积层的密集连接块
Fig.3  空洞空间金字塔
Fig.4  3种特征融合方式
Fig.5  合肥市训练区域和测试区域划分范围
用途 样本制作及模型测试 泛化性验证
传感器类型
地理位置
GF2-PMS2
合肥市
GF2-PMS1
天津市
GF1-PMS1
铜陵市
2
2019-03-11
E118.4,N31.3
GF6-PMS
合肥市
2
2020-05-04
E117.6,N31.3
SV1
贵州市
空间分辨率/m
获取时间
中心坐标/(°)
1
2017-01-26
E117.3,N31.9
1
2019-04-15
E117.4,N39.0
0.5
2019-12-25
E105.3,N25.9
Tab.1  影像参数
类别 合肥示例1 合肥示例2 天津示例1 天津示例2
影像
标签
Tab.2  原始影像与建筑物标签数据
Fig.6  结果展示
区域 OA IOU F1
合肥区域 96.52 72.60 84.45
天津区域 97.86 76.06 86.40
平均精度 97.19 74.33 85.43
Tab.3  测试精度
方法名称 OA IOU F1
本文方法 97.19 74.33 85.43
最大似然法 58.68 35.13 50.17
支持向量机 84.03 45.47 62.46
面向对象 67.40 35.13 50.17
Tab.4  与传统方法提取精度对比
区域 遥感影像 标签 本文方法 最大似然法 支持向量机 面向对象
A
B
C
D
Tab.5  与传统方法提取结果对比
方法名称 OA IOU F1
本文方法 97.19 74.33 85.43
DenseNet 88.29 55.39 70.01
DeeplabV3+ 91.01 70.01 82.71
BiseNet 89.55 54.83 72.40
Tab.6  与深度学习网络模型提取精度对比
区域 遥感影像 标签 本文方法 DenseNet DeeplabV3+ BiseNet
A
B
C
D
Tab.7  与经典深度学习网络模型提取结果对比
Fig.7-1  多源遥感影像测试结果
Fig.7-2  多源遥感影像测试结果
影像类型 OA IOU F1
GF-1 82.75 60.32 75.25
GF-6 90.96 87.81 93.51
SV1 95.93 51.95 68.37
Tab.8  测试精度表
[1] 于嘉. 基于特征提取的北方乡村景观建筑物层次化布局研究[J]. 科技通报, 2019, 35(1):147-150.
Yu J. Research on hierarchical distribution of buildings in northern rural landscape based on feature extraction[J]. Bulletin of Science and Technology, 2019, 35(1):147-150.
[2] Luis M, Luis M P, Erick M, et al. Novel unsupervised classification of collapsed buildings using satellite imagery,hazard scenarios and fragility functions[J]. Remote Sensing, 2018, 10(2):296.
doi: 10.3390/rs10020296
[3] 刘焕军, 杨昊轩, 徐梦园, 等. 基于裸土期多时相遥感影像特征及最大似然法的土壤分类[J]. 农业工程学报, 2018, 34(14):132-139.
Liu H J, Yang H X, Xu M Y. Soil classification based on maximum likelihood method and features of multitemporal remote sensing images in bare soil period[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14):132-139.
[4] 张浩, 赵云胜, 陈冠宇, 等. 基于支持向量机的遥感图像建筑物识别与分类方法研究[J]. 地质科技情报, 2016(6):200-205.
Zhang H, Zhao Y S, Chen G Y. Remote sensing image building recognition and classification based on the support vector machine[J]. Geological Science and Technology Information, 2016(6):200-205.
[5] 李强, 张景发. 基于CART决策树提取高分辨率遥感影像建筑物信息[J]. 地震, 2013, 33(2):96-102.
Li Q, Zhang J F. Extraction of building information from high resolution images based on CART decision tree[J]. Earthquake, 2013, 33(2):96-102.
[6] 于书媛, 骆佳骥, 杨源源. 基于高分卫星遥感影像的城市建筑物提取研究[J]. 华南地震, 2019, 39(2):26-33.
Yu S Y, Luo J J, Yang Y Y. Research on extraction of urban buildings based on high satellite remote sensing images[J]. South China Journal of Seismology, 2019, 39(2):26-33
[7] 王崇倡, 武文波, 张建平. 基于BP神经网络的遥感影像分类方法[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(1):32-35.
Wang C C, Wu W B, Zhang J P. Classification for remote sensing image based on BP neural network[J]. Journal of Liaoning Technical University(Natural Science), 2009, 28(1):32-35.
[8] Shackelford A K, Davis C H. A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(10):2354-2363.
[9] Hofmann P. Detecting informal settlements from IKONOS image data using methods of object oriented image analysis:An example from Cape Town (South Africa)[M]. Jürgens C.Remote Sensing of Urban Areas/Fernerkundung in Urbanen Räumen, 2001:41-42.
[10] 陶超, 谭毅华, 蔡华杰, 等. 面向对象的高分辨率遥感影像城区建筑物分级提取方法[J]. 测绘学报, 2010, 39(1):39-45.
Tao C, Tan Y H, Cai H J, et al. Objectoriented method of hierarchical urban building extraction from high-resolution remotesensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):39-45.
[11] 邓瑞, 林金朝, 杨宏志. 基于深度学习的建筑物识别[J]. 重庆工商大学学报(自然科学版), 2019(4):17-22.
Deng R, Lin J C, Yang H Z. Building identification based on deep learning[J]. Chongqing Technology & Business University(Natural Science), 2019(4):17-22.
[12] Alshehhi R, Marpu P R, Woon W L, et al. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2017, 130:139-149.
[13] Mnih V. Machine learning for aerial image labeling[D]. Toronto:University of Toronto, 2013.
[14] 杨建宇, 周振旭, 杜贞容, 等. 基于SegNet语义模型的高分辨率遥感影像农村建设用地提取[J]. 农业工程学报, 2019, 35(5):259-266.
Yang J Y, Zhou Z X, Du Z R, et al. Rural construction land extraction from high spatial resolution remote sensing image based on SegNet semantic segmentation model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5):259-266.
[15] 吕道双. 一种改进型U-Net遥感影像建筑物提取[J]. 测绘, 2019, 42(5):231-234.
Lyu D S. An improved U-Net remote sensing image building extraction[J]. Surveying Mapping, 2019, 42(5):231-234.
[16] Yi Y, Zhang Z, Zhang W, et al. Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network[J]. Remote Sensing, 2019, 11(15):1774.
doi: 10.3390/rs11151774
[17] Huang Z, Cheng G, Wang H, et al. Building extraction from multi-source remote sensing images via deep deconvolution neural networks[C]// Geoscience & Remote Sensing Symposium.IEEE, 2016.
[18] Feng W, Sui H, Hua L, et al. Improved deep fully convolutional network with superpixel-based conditional random fields for building extraction[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019.
[19] Liu P, Liu X, Liu M, et al. Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network[J]. Remote Sensing, 2019, 11(7):830.
doi: 10.3390/rs11070830
[20] 徐胜军, 欧阳朴衍, 郭学源. 多尺度特征融合空洞卷积ResNet遥感图像建筑物分割[J]. 光学精密工程, 2020, 28(7):1588-1599.
Xu S J, Ouyang P Y, Guo X Y. Building segmentation in remote sensing image based on multiscale-feature fusion dilated convolution resnet[J]. Optics and Precision Engineering, 2020, 28(7):1588-1599.
[21] Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).arXiv, 2019.
[22] Huang J, Zhu Z, Huang G. Multi-stage HRNet:Multiple stage high-resolution network for human pose estimation[EB/OL]. ( 2019- 10- 14)[2021- 01- 07]. http://arxiv.org/abs/1910.05901.
[23] Yang H, Wu P, Yao X, et al. Building extraction in very high resolution imagery by dense-attention networks[J]. Remote Sensing, 2018, 10(11):1768.
doi: 10.3390/rs10111768
[24] 蒋应锋, 张桦, 薛彦兵, 等. 一种新的多尺度深度学习图像语义理解方法研究[J]. 光电子·激光, 2016(2):224-230.
Jiang Y F, Zhang H, Xue Y B, et al. A new multiscale image semantic understanding method based on deep learning[J]. Journal of Optoelectronics Laser, 2016(2):224-230.
[25] Huang G, Liu Z, Laurens V D M, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Honolulu:IEEE, 2017:2261-2269
[26] Yao X, Yang H, Wu Y, et al. Land use classification of the deep convolutional neural network method reducing the loss of spatial features[J]. Sensors, 2019, 19(12):2792.
doi: 10.3390/s19122792
[27] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Computer Vision-ECCV 2018.Munich:Springer, 2018:833-851.
[28] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184
[29] Awrangjeb M, Fraser C S. An automatic and threshold-free performance evaluation system for building extraction techniques from airborne LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7(10):4184-4198.
[30] Yu C, Wang J, Peng C, et al. BiSeNet:Bilateral segmentation network for real-time semantic segmentation[EB/OL]. ( 2018- 08- 02) [2021- 01- 07]. http://arxiv.org/abs/1808.00897.
[31] 杜一民, 戴激光. 利用高程信息结合彩色遥感航空影像提取建筑物目标[J]. 测绘与空间地理信息, 2019(7):125-127.
Du Y M, Dai J G. Using elevation information to combine color remote sensing aerial images extraction of building targets[J]. Geomatics & Spatial information Technology, 2019(7):125-127.
[1] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[2] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[3] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[4] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[5] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[6] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[7] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[8] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[9] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[10] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
[11] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[12] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[13] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[14] 程滔. 一种与遥感影像同步纠正的矢量地理信息采集方法[J]. 自然资源遥感, 2022, 34(3): 59-64.
[15] 唐文魁, 俞露, 周伟奇, 岳隽, 周正. 基于长时间序列遥感数据的深圳景观连通性动态变化研究[J]. 自然资源遥感, 2022, 34(3): 97-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发