Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (3): 18-26    DOI: 10.6046/zrzyyg.2020346
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种基于分层策略的时空融合模型
张爱竹1,2(), 王伟1, 郑雄伟3, 姚延娟4, 孙根云1,2(), 辛蕾5, 王宁5, 胡光6
1.中国石油大学(华东)海洋与空间信息学院,青岛 266580
2.青岛海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266237
3.中国自然资源航空物探遥感中心,北京 100083
4.环境保护部卫星环境应用中心,北京 100094
5.国家海洋局北海预报中心,青岛 266061
6.武汉中测晟图遥感技术有限公司,武汉 430223
A hierarchical spatial-temporal fusion model
ZHANG Aizhu1,2(), WANG Wei1, ZHENG Xiongwei3, YAO Yanjuan4, SUN Genyun1,2(), XIN Lei5, WANG Ning5, HU Guang6
1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China
2. Laboratory for Marine Resources Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237,China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083,China
4. Satellite Environment Center, Ministry of Environmental protection of China, Beijing 100094, China
5. North China Sea Marine Forecasting Center of State Oceanic Administration, Qingdao 266061,China
6. Wuhan SunMap RS Techology Co., Ltd., Wuhan 430223, China
全文: PDF(6774 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

时空数据融合能够有效提高高空间分辨率遥感数据的时间分辨率,但是目前广泛使用的时空自适应反射率融合模型在突变区域的预测效果不佳。针对这一问题,提出一种基于分层策略的时空融合模型(hierarchical spatial-temporal fusion model,H-STFM)。该模型首先根据相邻时刻低空间分辨率数据的反射率差值,将待预测的目标像元分为物候变化像元和突变像元; 然后对物候变化像元进行线性回归预测,对突变像元进行加权滤波预测; 最后将物候变化和突变区域的预测结果利用优化的时间加权函数融合生成最后预测图像。以两组中分辨率遥感数据MODIS和Landsat图像为基础数据进行实验对H-STFM模型进行了定性与定量评价。结果表明,提出模型的实验结果在方差误差与相对无量纲全局误差方面表现明显优于时空自适应融合模型。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张爱竹
王伟
郑雄伟
姚延娟
孙根云
辛蕾
王宁
胡光
关键词 时空融合分层策略地表反射率LandsatMODIS    
Abstract

The temporal resolution of high spatial resolution remote sensing data can be effectively improved by spatio-temporal fusion of remote sensing data. However, the most widely used spatial and temporal adaptive reflectance fusion model (STARFM) fails to achieve highly accurate prediction effects for areas with abrupt changes at present. Given this, this paper proposed a hierarchical spatial-temporal fusion model (H-STFM). In this model, the target pixels to be predicted are divided into pixels with phenological change and pixels with abrupt changes, which are predicted using linear regression and weighted filtering methods, respectively. Then the prediction results of the two types of pixels are fused using an optimized time weighted function to form the final prediction map. The H-STFM proposed in this paper was qualitatively and quantitatively assessed using two sets of medium-resolution remote sensing images from moderate resolution imaging spectrometer (MODIS) and Landsat satellite. As indicated by the experiment results, H-STFM is significantly superior to STARFM in terms of structural similarity and relative dimensionless global error.

Key wordsspatio-temporal fusion    hierarchical    surface reflectance    Landsat    MODIS
收稿日期: 2020-11-05      出版日期: 2021-09-24
ZTFLH:  TP753  
基金资助:国家自然科学基金项目“饮用水源地保护区环境风险源变化多尺度遥感探测机制与不确定性研究”(41871270);国家自然科学基金项目“高异质性滨海湿地盐沼植被环境响应机理与优化分类方法研究”(41801275)
通讯作者: 孙根云
作者简介: 张爱竹(1988-),女,博士,讲师,主要从事多源遥感数据智能解译、城市遥感方面的研究。Email: zhangaizhu789@163.com
引用本文:   
张爱竹, 王伟, 郑雄伟, 姚延娟, 孙根云, 辛蕾, 王宁, 胡光. 一种基于分层策略的时空融合模型[J]. 自然资源遥感, 2021, 33(3): 18-26.
ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020346      或      https://www.gtzyyg.com/CN/Y2021/V33/I3/18
Fig.1  算法流程图
Fig.2  基于超像素的变化同质性像素筛选
(a) 基于阈值的变化同质像素初步选择 (b) 基于混合像元解混的变化同质像素约束
Fig.3  数据集1的MODIS地表反射率和Landsat地表反射率图像
Fig.4  数据集2的MODIS地表反射率和Landsat地表反射率图像
Fig.5  数据集1预测图像
Fig.6  数据集1观测值和预测值的散点图
方法 AAD VOE SSIM ERGAS
绿 近红 绿 近红 绿 近红
STARFM 67.687 9 89.006 3 315.858 1 91.652 2 130.023 3 414.607 0 0.623 5 0.522 3 0.120 0 1.287 4
ESTARFM 37.551 1 34.454 0 93.441 0 47.359 1 45.866 2 117.750 0 0.845 5 0.845 8 0.901 5 0.493 9
H-STFM 36.583 0 32.028 4 102.912 3 45.576 2 41.942 2 114.760 6 0.856 4 0.856 5 0.909 3 0.455 5
Tab.1  数据集1的定量评估结果
Fig.7  数据集2预测图像
Fig.8  数据集2观测值和预测值的散点图
方法 AAD VOE SSIM ERGAS
绿 近红 绿 近红 绿 近红
STARFM 7.316 1 6.309 0 5.725 9 3.293 7 2.118 0 3.319 7 0.916 5 0.956 8 0.980 1 1.504 3
ESTARFM 1.256 7 4.596 6 12.557 9 1.747 0 2.267 9 2.919 5 0.997 5 0.983 9 0.948 4 1.178 0
H-STFM 1.862 4 1.049 6 4.151 1 1.132 3 1.140 8 1.680 9 0.995 3 0.998 6 0.992 0 0.496 6
Tab.2  数据集2的定量评估结果
[1] 邬明权, 牛铮, 王长耀. 多源遥感数据时空融合模型应用分析[J]. 地球信息科学学报, 2014, 16(5):776-783.
doi: 10.3724/SP.J.1047.2014.00776
Wu M Q, Niu Z, Wang C Y. Assessing the accuracy of spatial and temporal image fusion model of complex area in south China[J]. Journal of Geo-Information Science, 2014, 16(5):776-783.
[2] Hilker T, Wulder M A, Coops N C, et al. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model[J]. Remote Sensing of Environment, 2009, 113(9):1988-1999.
doi: 10.1016/j.rse.2009.05.011
[3] Dong T F, Liu J G, Qian B D, et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 49:63-74.
doi: 10.1016/j.jag.2016.02.001
[4] Shen H F, Huang L W, Zhang L P, et al. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data:A 26-year case study of the city of Wuhan in China[J]. Remote Sensing of Environment, 2016, 172:109-125.
doi: 10.1016/j.rse.2015.11.005
[5] Weng Q H, Fu P, Gao F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data[J]. Remote Sensing of Environment, 2014, 145:55-67.
doi: 10.1016/j.rse.2014.02.003
[6] Kong F J, Li X B, Wang H, et al. Land cover classification based on fused data from GF-1 and MODIS NDVI time series[J]. Remote Sensing, 2016, 8:741.
doi: 10.3390/rs8090741
[7] Liu H, Weng Q H. Enhancing temporal resolution of satellite imagery for public health studies:A case study of West Nile Virus outbreak in Los Angeles in 2007[J]. Remote Sensing of Environment, 2012, 117:57-71.
doi: 10.1016/j.rse.2011.06.023
[8] Wu M, Wu C, Huang W, et al. An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery[J]. Information Fusion, 2016, 31:14-25.
doi: 10.1016/j.inffus.2015.12.005
[9] Fu D, Chen B, Wang J, et al. An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model[J]. Remote Sensing, 2013, 5(12):6346-6360.
doi: 10.3390/rs5126346
[10] Huang B, Song H. Spatiotemporal reflectance fusion via sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3707-3716.
doi: 10.1109/TGRS.2012.2186638
[11] 黄波, 赵涌泉. 多源卫星遥感影像时空融合研究的现状及展望[J]. 测绘学报, 2017, 46(10):1492-1499.
Huang B, Zhao Y Q. Research status and prospect of spatiotemporal fusion of multi-source satellite remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1492-1499.
[12] Chen B, Chen L, Huang B, et al. Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139:75-87.
doi: 10.1016/j.isprsjprs.2018.02.021
[13] 蔡德文, 牛铮, 王力. 遥感数据时空融合技术在农作物监测中的适应性研究[J]. 遥感技术与应用, 2012, 27(6):927-932.
Cai D W, Niu Z, Wang L. Adaptability research of spatial and temporal remote sensing data fusion technology in crop monitoring[J]. Remote Sensing Technology and Application, 2012, 27(6):927-932.
[14] Ping B, Meng Y, Su F. An enhanced linear spatio-temporal fusion method for blending landsat and MODIS data to synthesize landsat-like imagery[J]. Remote Sensing, 2018, 10(6):881.
doi: 10.3390/rs10060881
[15] Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218.
doi: 10.1109/TGRS.2006.872081
[16] Gevaert C M, Garcia-haro F J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion[J]. Remote Sensing of Environment, 2015,(156):34-44.
[17] Hilker T, Wulder M A, Coops N C, et al. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009, 113(8):1613-1627.
doi: 10.1016/j.rse.2009.03.007
[18] Zhu X, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11):2610-2623.
doi: 10.1016/j.rse.2010.05.032
[19] Belgiu M, Stein A. Spatiotemporal image fusion in remote sensing[J]. Remote Sensing, 2019, 11(7):818.
doi: 10.3390/rs11070818
[20] 方帅, 姚振稷, 曹风云. 线性模型的遥感图像时空融合[J]. 中国图象图形学报, 2020, 25(3):579-592.
Fang S, Yao Z J, Cao F Y. Spatio-temporal method of satellite image fusion based on linear model[J]. Journal of Image and Graphics, 2020, 25(3):579-592
[21] Cheng Q, Liu H Q, Shen H F, et al. A spatial and temporal nonlocal filter-based data fusion method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4476-4488.
doi: 10.1109/TGRS.2017.2692802
[22] Wang Q, Atkinson P M. Spatio-temporal fusion for daily Sentinel-2 images[J]. Remote Sensing of Environment, 2018(204):31-42.
[23] 刘慧琴, 吴鹏海, 沈焕锋, 等. 一种基于非局部滤波的遥感时空信息融合方法[J]. 地理与地理信息科学, 2015, 31(4):27-32.
Liu H Q, Wu P H, Shen H F, et al. A spatio-temporal information fusion method based on non-local means filter[J]. Geography and Geo-Information Science, 2015, 31(4):27-32.
[24] Karydas C, Jiang B. Scale optimization in topographic and hydrographic feature mapping using fractal analysis[J]. ISPRS International Journal of Geo-Information, 2020, 9(11):631.
doi: 10.3390/ijgi9110631
[25] 王茂芝, 徐文皙, 王璐, 等. 高光谱遥感影像端元提取算法研究进展及分类[J]. 遥感技术与应用, 2015, 30(4):616-625.
Wang M Z, Xu W X, Wang L, et al. Research progress on endmember extraction algorithm and its classification of hyperspectral remote sensing imagery[J]. Remote Sensing Technology and Application, 2015, 30(4):616-625.
[26] 刘汉湖, 杨武年, 杨容浩. 高光谱遥感岩矿端元提取与分析方法研究[J]. 岩石矿物学杂志, 2013(2):213-220.
Liu H H, Yang W N, Yang R H. The end-member extraction and analysis method for rocks and minerals using hyperspectral remote sensing image[J]. Acta Petrologica et Mineralogica, 2013(2):213-220.
[1] 李娜, 甘甫平, 董新丰, 李娟, 张世凡, 李彤彤. 基于高分五号高光谱数据的石漠化调查应用研究[J]. 自然资源遥感, 2023, 35(2): 230-235.
[2] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[3] 于森, 贾明明, 陈高, 鲁莹莹, 李毅, 张博淳, 路春燕, 李慧颖. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2): 42-49.
[4] 安娜, 赵莹莹, 孙娅琴, 张爱竹, 付航, 姚延娟, 孙根云. 基于奇异谱分析的改进遥感时空融合模型[J]. 自然资源遥感, 2023, 35(2): 89-96.
[5] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[6] 李毅, 程丽娜, 鲁莹莹, 张博淳, 于森, 贾明明. 基于最大值合成和最大类间方差法莱州湾滨海滩涂变化研究[J]. 自然资源遥感, 2022, 34(4): 68-75.
[7] 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
[8] 毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 北美洲地表温度数据重建及时空变化分析[J]. 自然资源遥感, 2022, 34(4): 203-215.
[9] 董双发, 范晓, 石海岗, 许莉萍, 章新益. 基于Landsat8和无人机的福清核电温排水分布研究[J]. 自然资源遥感, 2022, 34(3): 112-120.
[10] 王驷鹞, 赵春雷, 陈霞, 刘丹. 基于遥感的唐山市绿色空间演化及对热岛效应的影响[J]. 自然资源遥感, 2022, 34(2): 168-175.
[11] 左璐, 孙雷刚, 鲁军景, 徐全洪, 刘剑锋, 马晓倩. 基于MODIS的京津冀地区生态质量综合评价及其时空变化监测[J]. 自然资源遥感, 2022, 34(2): 203-214.
[12] 伯英杰, 曾业隆, 李国庆, 曹兴文, 姚清秀. 浮岛光伏电场对地表温度空间分布特征的影响[J]. 自然资源遥感, 2022, 34(1): 158-168.
[13] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[14] 韦耿, 侯钰俏, 查勇. 新冠疫情影响下武汉市气溶胶类型变化分析[J]. 自然资源遥感, 2021, 33(3): 238-245.
[15] 桑潇, 张成业, 李军, 朱守杰, 邢江河, 王金阳, 王兴娟, 李佳瑶, 杨颖. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析[J]. 自然资源遥感, 2021, 33(3): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发