Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (1): 7-14    DOI: 10.6046/gtzyyg.2016.01.02
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
全约束线性分解的月表虹湾地区矿物含量反演
张琪1, 刘福江1, 李婵2, 乔乐3, 郭振辉1, 柴春鹏1
1. 中国地质大学(武汉)遥感科学与技术系, 武汉 430074;
2. 新疆维吾尔自治区测绘科学研究院, 乌鲁木齐 830002;
3. 中国地质大学(武汉)行星科学研究所, 武汉 430074
Fully constrained linear-unmixing for inversion of lunar mineral abundance in Sinus Iridum
ZHANG Qi1, LIU Fujiang1, LI Chan2, QIAO Le3, GUO Zhenhui1, CHAI Chunpeng1
1. Department of Remote Sensing Science and Technology, China University of Geosciences(Wuhan), Wuhan 430074, China;
2. Xinjiang Academy of Surveying and Mapping, Urumqi 830002, China;
3. Institute of Planetary Science, China University of Geosciences(Wuhan), Wuhan 430074, China
全文: PDF(13131 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

月表主要矿物含量的定量反演是月球科学领域的重要课题之一,对未来月表矿物信息解译有重要指导意义,因此提出一种对月表高光谱遥感数据线性分解获取矿物含量的方法。首先,利用Hapke辐射传输模型将Relab光谱库中的5种矿物(单斜辉石、斜方辉石、斜长石、橄榄石和钛铁矿)非线性混合的反射光谱转换为线性混合的单次反照率;然后,按照比例随机生成混合像元;最后基于全约束线性光谱分解方法建立上述5种矿物分解含量与真实含量的统计关系模型。利用Apollo登陆采样点实测数据对该模型进行验证的结果表明,辉石、斜长石、橄榄石和钛铁矿的反演结果与实测结果的相关系数分别为0.83,0.86,0.72和0.77。采用上述方法,利用印度探月卫星Chandrayaan-1搭载的月球矿物制图仪(moon mineralogy mapper,M3)高光谱数据得到月表虹湾地区矿物的含量分布图,表明利用全约束线性分解对高光谱矿物识别和含量反演是一种行之有效的方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵鹏
关键词 开发初期土地利用变化遥感监测    
Abstract

Quantitative inversion of the main lunar mineral abundance is an important issue in the field of lunar science, which has great guiding effect on lunar mineral information interpretation in the future. In this paper, a method of linear unmixing for hyperspectral remote sensing image is proposed to obtain the mineral abundance. Firstly, based on Hapke radiative transfer model, the authors transformed the non-linear mixed reflectance spectra into the linear mixed single scattering albedo of five end-member minerals (clinopyroxene, orthopyroxene, plagioclase, olivine and ilmenite) in the Relab spectral library, and then generated mixed pixels according to the linear proportion randomly; in this way, the statistical relationship models of mineral unmixing abundance and real abundance for the above five minerals can be established respectively based on fully constrained linear-unmixing method. The verification result with the data measured by Apollo sampling points indicates that the correlation coefficient between mineral abundances inversed and measured in Apollo of pyroxene, plagioclase, olivine and ilmenite are 0.83, 0.86, 0.72 and 0.77 respectively. With this method, the authors acquired the lunar mineral abundance distribution maps in Sinus Iridum using Chandrayaan-1 M3 hyperspectral data, which shows that the fully constrained linear-unmixing method is a kind of effective approach to mineral identification and inversion with hyperspectral data.

Key wordsinitial stage of exploitation    land use change    remote sensing monitoring
收稿日期: 2014-08-21      出版日期: 2015-11-27
:  TP751.1  
  P577  
基金资助:

中央高校基本科研业务费专项资金项目"月表虹湾地区岩矿含量信息高精度定量反演模型"(编号:CUGL130261)资助。

通讯作者: 刘福江(1973-),男,博士,副教授,主要从事地质遥感、自然资源与环境遥感等方面的研究。Email:felixwuhan@163.com。
作者简介: 张琪(1992-),女,硕士研究生,主要研究方向为深空探测。Email:zhangqicug@163.com。
引用本文:   
张琪, 刘福江, 李婵, 乔乐, 郭振辉, 柴春鹏. 全约束线性分解的月表虹湾地区矿物含量反演[J]. 国土资源遥感, 2016, 28(1): 7-14.
ZHANG Qi, LIU Fujiang, LI Chan, QIAO Le, GUO Zhenhui, CHAI Chunpeng. Fully constrained linear-unmixing for inversion of lunar mineral abundance in Sinus Iridum. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 7-14.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.01.02      或      https://www.gtzyyg.com/CN/Y2016/V28/I1/7

[1] Kumar K A S,Chowdhury A R,Banerjee A,et al.Hyper spectral imager for lunar mineral mapping in visible and near infrared band[J].Current Science,2009,96(4):496-499.

[2] Isaacson P J,Basu S A,Pieters C M,et al.The lunar rock and mineral characterization consortium:Deconstruction and integrated mineralogical,petrologic,and spectroscopic analyses of mare basalts[J].Meteoritics & Planetary Science,2011,46(2):228-251.

[3] Pieters C M,Boardman J,Buratti B,et al.The moon mineralogy mapper(M3) on Chandrayaan-1[J].Current Science,2009,96(4):500-505.

[4] 田丰.全波段(0.35~25μm)高光谱遥感矿物识别和定量化反演技术研究[D].北京:中国地质大学(北京),2010. Tian F.Identification and Quantitative Retrival of Minerals Information Integrating VIS-NIR-MIR-TIR(0.35~25μm) Hyspectral Data[D].Beijing:China University of Geoscience(Beijing),2010.

[5] Heiken G,Vaniman D,French B M.Lunar Source Book:A User's Guide to the Moon[M].Cambridge:Cambridge University Press,1991.

[6] Taylor L A,Pieters C M,Keller L P,et al.Lunar mare soils:Space weathering and the major effects of surface-correlated nanophase Fe[J].Journal of Geoscience Research,2001,106(E11):27985-27999.

[7] Lucey P G.Quantitative mineralogic and elemental abundance from spectroscopy of the moon:Status,prospects,limits,and a plea[C]//Workshop on New Views of the Moon:Integrated Remotely Sensed,Geophysical,and Sample Datasets.1998,1:53-54.

[8] Lucey P G.Mineral maps of the Moon[J].Geophysical Research Letters,2004,31(8),:L08701.

[9] Liu F J,Yang R,Zhang Y,et al.Distribution of olivine and pyroxene derived from Clementine data in crater Copernicus[J].Journal of Earth Science,2011,22(5):586-594.

[10] Li L,Lucey P G.Use of multiple end member spectral mixture analysis and radiative transfer model to derive lunar mineral abundance maps[C]//Proceedings of 40th Lunar and Planetary Science Conference.Woodlands:Lunar Planet Science,2009.

[11] 闫柏琨,甘甫平,王润生,等.基于光谱分解的Clementine UV/VIS/NIR数据月表矿物填图[J].国土资源遥感,2009,21(4):19-24.doi:10.6064/gtzyyg.2009.04.04. Yan B K,Gan F P,Wang R S,et al.Mineral mapping of the lunar surface using Clementine UV/VIS/NIR data based on spectra unmixing of spectral[J].Remote Sensing for Land and Resources,2009,21(4):19-24.doi:10.6064/gtzyyg.2009.04.04.

[12] Yan B K,Wang R S,Gan F P,et al.Minerals mapping of the lunar surface with Clementine UVVIS/NIR data based on spectra unmixing method and Hapke model[J].Elsevier Icarus,2010,208(1):11-19.

[13] Johnson P E,Smith M O,Taylor-George S,et al.A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures[J].Journal of Geoscience Research:Solid Earth(1978-2012),1983,88(B4):3557-3561.

[14] Combe J P,McCord T B,Kramer G Y,et al.Mixing of surface materials investigated by spectral mixture analysis with the moon mineralogy mapper[C]//Proceedings of EGU General Assembly Conference.Vienna,Austria:EGU,2010.

[15] 吴昀昭,郑永春,邹永廖,等.嫦娥一号IIM数据处理分析与应用之一:全月表矿物吸收中心分布图[J].中国科学:物理学力学天文学,2010,40(11):1343-1362. Wu J Z,Zheng Y C,Zou Y L,et al.Processing analysis and one of the applications from Chang'E-1 IIM data:Mapping global lunar mineral absorption center distribution[J].Scientia Sinica:Physics,Mechanics and Astronomica,2010,40(11):1343-1362.

[16] 崔腾飞.月表矿物二向性反射模型研究[D].长春:吉林大学,2012. Cui T F.Study on Bidirectional Reflectance Model of Minerals on Lunar Surface[D].Changchun:Jilin University,2012.

[17] 李婵,刘福江,郑小坡,等.月表虹湾地区辉石及橄榄石含量反演[J]. 中国科学:物理学力学天文学,2013,43(11):1387-1394. Li C,Liu F J,Zheng X P,et al.Lunar pyroxene and olivine abundance analysis of Sinus Iridum[J].Scientia Sinica:Physics,Mechanics and Astronomyica,2013,43(11):1387-1394.

[18] 燕守勋,张兵,赵永超,等.高光谱遥感岩矿识别填图的技术流程与主要技术方法综述[J].遥感技术与应用,2004,19(1):52-63. Yan S X,Zhang B,Zhao Y C,et al.Summarizing the technical flow and main approaches for discrimination and mapping of rocks and minerals using hyperspectral remote sensing[J].Remote Sensing Technology Application,2004,19(1):52-63.

[19] 王振超.月壤光谱特性分析与月表矿物信息定量反演[D].北京:中国地质大学(北京),2011. Wang Z C.Analysis of Spectral Characteristics of Lunar Soil and Quantitative Inversion of Minerals Information[D].Beijing:China University of Geoscience(Beijing),2011.

[20] Mustand J F,Pieters C M.Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra[J].Journal of Geoscience Research,1989,94(B10):13619-13634.

[21] Hapke B.Theory of Reflectance and Emittance Spectroscopy[M].New York:Cambridge University Press,1993.

[22] Hapke B.Space weathering from mercury to the Aasteroid belt[J].Journal of Geophysical Research,2001,106(E5):10039-10073.

[23] 闫柏琨,李建忠,甘甫平,等.一种月壤主要矿物组分含量反演的光谱解混方法[J].光谱学与光谱分析,2012,32(12):3335-3340. Yan B K,Li J Z,Gan F P,et al.A spectral unmixing method of estimating main minerals abundance of lunar soils[J].Spectroscopy and Spectral Analysis,2012,32(12):3335-3340.

[24] Clark R N,Roush T L.Reflectance sepectroscopy:Quantitative analysis techniques for remote sensing applications[J].Journal of Geophysical Research,1984,89(B7):6329-6340.

[25] Pope P A,Greene M K.Geologic mapping through linear spectral unmixing of MTI imagery[C]//Pecora 16 "Global Priorities in Land Remote Sensing",Sioux Falls,2005.

[26] Heinz D C,Chang C.Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(3):529-545.

[27] Keshava N,Mustard J F.Spectral unmixing[J].IEEE Signal Processing Magazine,2002,19(1):44-57.

[28] 李二森.高光谱遥感图像混合像元分解的理论与算法研究[D].郑州:解放军信息工程大学,2011. Li E S.Research on Theory and Algorithms of Mixed Pixel Decomposition for Hyperspectral Remote Sensing Image[D].Zhengzhou:PLA Information Engineering University,2011.

[29] 薛彬,杨建峰,赵葆常.月球表面主要矿物反射光谱特性研究[J].地球物理学进展,2004,19(3):717-720. Xue B,Yang J F,Zhao B C.The study of spectral feature of major minerals on the lunar surface[J].Progress in Geophysics,2004,19(3):717-720.

[1] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[2] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[3] 桑潇, 张成业, 李军, 朱守杰, 邢江河, 王金阳, 王兴娟, 李佳瑶, 杨颖. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析[J]. 自然资源遥感, 2021, 33(3): 148-155.
[4] 汪清川, 奚砚涛, 刘欣然, 周文, 徐欣冉. 生态服务价值对土地利用变化的时空响应研究——以徐州市为例[J]. 自然资源遥感, 2021, 33(3): 219-228.
[5] 陈栋, 姚维岭. 基于ArcPy与定制ArcToolbox的矿山新增图斑自动编号及方法改进[J]. 国土资源遥感, 2021, 33(2): 262-269.
[6] 汪洁, 刘小杨, 杨金中, 周英杰, 安娜, 王志晖. 基于国产高空间分辨率卫星数据的浙江省矿山环境恢复治理典型模式分析[J]. 国土资源遥感, 2020, 32(3): 216-221.
[7] 刁明光, 刘文静, 李静, 刘芳, 王彦佐. 矿山遥感监测矢量成果数据动态变化检测方法[J]. 国土资源遥感, 2020, 32(3): 240-246.
[8] 冯力力, 江利明, 柳林, 孙亚飞. 新疆克拉牙依拉克冰川变化(1973—2016)主被动遥感监测分析[J]. 国土资源遥感, 2020, 32(2): 162-169.
[9] 石海岗, 梁春利, 张建永, 张春雷, 程旭. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2): 196-203.
[10] 刘晰, 郝利娜, 杨显华, 黄洁, 张志, 杨武年. 矿山遥感监测指标快速统计方法研究与实现[J]. 国土资源遥感, 2020, 32(2): 259-265.
[11] 郭瑞琦, 陆波, 陈恺霖. 基于CLUMondo模型的多情景土地利用变化动态模拟——以广西沿海城市为例[J]. 国土资源遥感, 2020, 32(1): 176-183.
[12] 汪洁, 殷亚秋, 于航, 蒋存浩, 万语. 基于RS和GIS的浙江省矿山地质环境遥感监测[J]. 国土资源遥感, 2020, 32(1): 232-236.
[13] 赵玉灵, 杨金中, 殷亚秋, 赵航, 何金宝, 张汉. 海南岛东部滨海锆钛砂矿开发状况遥感监测与生态恢复治理对策研究[J]. 国土资源遥感, 2019, 31(4): 143-150.
[14] 吴海平, 黄世存. 基于深度学习的新增建设用地信息提取试验研究——全国土地利用遥感监测工程创新探索[J]. 国土资源遥感, 2019, 31(4): 159-166.
[15] 张瑜, 赵晓丽, 左丽君, 张增祥, 徐进勇. 黄土高原土地利用变化对生态系统服务价值的影响[J]. 国土资源遥感, 2019, 31(3): 132-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发