Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (1): 122-129    DOI: 10.6046/gtzyyg.2016.01.18
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于TRMM降雨数据的中国黄淮海地区干旱监测分析
陈诚1,2,3, 赵书河1,2,3
1. 江苏省地理信息技术重点实验室, 南京大学, 南京 210023;
2. 卫星测绘技术与应用国家测绘地理信息局重点实验室, 南京大学, 南京 210023;
3. 中国南海研究协同创新中心, 南京 210023
Drought monitoring and analysis of Huanghuai Hai plain based on TRMM precipitation data
CHEN Cheng1,2,3, ZHAO Shuhe1,2,3
1. Jiangsu Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China;
2. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing University, Nanjing 210023, China;
3. Collaborative Innovation Center of South China Sea Studies, Nanjing 210023, China
全文: PDF(10363 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

热带降雨测量卫星(tropical rainfall measuring mission,TRMM)的降雨数据覆盖范围广,时间分辨率高,是区域干旱监测的一种有效数据源。将0.25°空间分辨率的TRMM 3B43数据降尺度处理成0.05°空间分辨率数据,用以构建降水量距平百分率(Pa指数)和Z指数,对黄淮海地区2010年冬季到2011年春季的干旱时空演化特征进行监测与分析,并计算同期的标准化降水指数(standardized precipitation index,SPI)对监测结果进行验证。研究结果表明,降尺度数据具有较高的可靠性,与实测数据的拟合结果R2>0.76; Pa指数突出降水盈亏程度,能够有效监测区域尺度干旱,但缺乏空间分布规律; Z指数以Person-Ⅲ型分布拟合降水量,能够很好地监测干旱的时空演化特征,但干旱等级划分相对困难;利用Pa指数对Z指数干旱等级划分进行修正,其结果与SPI相关程度R2>0.75,表明Pa和Z指数用于干旱监测的有效性,为区域尺度干旱监测提供了一种切实可行的方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成功
朱佳玮
毛先成
关键词 ASTER岩性指数(LI)主成分分析岩矿信息提取找矿预测    
Abstract

TRMM (tropical rainfall measuring mission) precipitation data, covering a wide range with high temporal resolution, is an effective data source to monitor drought on a regional scale. The spatial resolution of 0.25° TRMM 3B43 data was processed using the downscaling method. The downscaling data with 0.05° spatial resolution were used to construct a percentage of monthly precipitation anomalies (Pa index) and Z index, and the two indices were used to monitor the temporal and spatial change of drought from the winter of 2010 to the spring of 2011 in the Huanghuai Hai plain. The standardized precipitation index (SPI) during the same period was also calculated to verify the results. The results showed that the downscaling results had higher reliability with the fitting result R2 higher than 0.76. Pa index that emphasizes gains and losses of precipitation can be used for drought monitoring on the regional scale, but it lacks the space distribution of drought; Z index fitting the precipitation based on the Person-Ⅲ distribution is ideal for monitoring the temporal and spatial distribution of drought, but the drought grade is difficult to divide. The drought grade of Pa index was used to correct the drought grade of Z index. Two indices and SPI had higher degree of correlation with R2 greater than 0.75, indicating that Pa and Z index is effective for drought monitoring. The results achieved by the authors could provide a practical means for monitoring drought on a regional scale.

Key wordsASTER    lithologic index(LI)    principal component analysis    extraction of mineral and rock information    prospecting prediction
收稿日期: 2014-08-11      出版日期: 2015-11-27
:  TP79  
基金资助:

973计划项目"气候变化对我国粮食生产系统的影响机理及适应机制研究"(编号:2010CB951503)、中国科学院战略性先导科技专项"应对气候变化的碳收支认证及相关问题"(编号:XDA05050106)及江苏高校优势学科建设工程资助项目共同资助。

通讯作者: 赵书河(1971-),男,博士,副教授。主要从事高分辨遥感信息处理与信息融合研究。Email:zhaosh@nju.edu.cn。
作者简介: 陈诚(1990-),男,硕士研究生,主要从事遥感图像处理和定量遥感方向研究。Email:chcheng@whu.edu.cn。
引用本文:   
陈诚, 赵书河. 基于TRMM降雨数据的中国黄淮海地区干旱监测分析[J]. 国土资源遥感, 2016, 28(1): 122-129.
CHEN Cheng, ZHAO Shuhe. Drought monitoring and analysis of Huanghuai Hai plain based on TRMM precipitation data. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 122-129.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.01.18      或      https://www.gtzyyg.com/CN/Y2016/V28/I1/122

[1] 张强,张良,崔显成,等.干旱监测与评价技术的发展及其科学挑战[J].地球科学进展,2011,26(7):763-778. Zhang Q,Zhang L,Cui X C,et al.Progresses and challenges in drought assessment and monitoring[J].Advances in Earth Sciences,2011,26(7):763-778.

[2] 刘庚山,郭安红,安顺清,等.帕默尔干旱指标及其应用研究进展[J].自然灾害学报,2004,13(4):21-27. Liu G S,Guo A H,An S Q,et al.Research progress in Palmer drought severity index and it's application[J].Journal of Natural Disasters,2004,13(4):21-27.

[3] 杨绍锷,吴炳方,熊隽,等.基于TRMM降水产品计算月降水量距平百分率[J].遥感信息,2010(5):62-66. Yang S E,Wu B F,Xiong J,et al.Calculation of monthly precipitation anomaly percentage using TRMM rainfall product[J].Remote Sensing Information,2010(5):62-66.

[4] 林盛吉,许月萍,田烨,等.基于Z指数和SPI指数的钱塘江流域干旱时空分析[J].水力发电学报,2012,31(2):20-26. Lin S J,Xu Y P,Tian Y,et al.Spatial and temporal analysis of drought in Qiantang River Basin based on Z index and SPI[J].Journal of Hydroelectric Engineering,2012,31(2):20-26.

[5] McKee T B,Doesken N J,Kleist J.The relationship of drought frequency and duration to time scales[C]//Proceedings of the 8th Conference on Applied Climatology.Boston,MA:American Meteorological Society,1993,17(22):179-183.

[6] 罗春,刘辉,戚陆越.基于遥感指数的生态变化评估——以常宁市为例[J].国土资源遥感,2014,26(4):145-150.doi:10.6046/gtzyyg.2014.04.23. Luo C,Liu H,Qi L Y.Ecological changes assessment based on remote sensing indices:A case study of Changning City[J].Remote sensing for Land and Resources,2014,26(4):145-150.doi:10.6046/gtzyyg.2014.04.23.

[7] 李博,唐世浩.基于TRMM卫星资料分析三峡蓄水前后的局地降水变化[J].长江流域资源与环境,2014,23(5):617-625. Li B,Tang S H.Local precipitation changes induced by the Three Gorges reservoir based on TRMM observations[J].Resources and Environment in the Yangtze Basin,2014,23(5):617-625.

[8] 臧文斌,阮本清,李景刚,等.基于TRMM降雨数据的西南地区特大气象干旱分析[J].中国水利水电科学研究院学报,2010,8(2):97-106. Zang W B,Ruan B Q,Li J G,et al.Analysis of extraordinary meteorological drought in Southwest China by using TRMM precipitation data[J].Journal of China Institute of Water Resources and Hydropower Research,2010,8(2):97-106.

[9] 李景刚,李纪人,黄诗峰,等.基于TRMM数据和区域综合Z指数的洞庭湖流域近10年旱涝特征分析[J].资源科学,2010,32(6):1103-1110. Li J G,Li J R,Huang S F,et al.Characteristics of the recent 10-year flood/drought over the Dongting Lake Basin based on TRMM precipitation data and regional integrated Z-index[J].Resources Science,2010,32(6):1103-1110.

[10] 杜灵通,田庆久,黄彦,等.基于TRMM数据的山东省干旱监测及其可靠性检验[J].农业工程学报,2012,28(2):121-126. Du L T,Tian Q J,Huang Y,et al.Drought monitoring based on TRMM data and its reliability validation in Shandong province[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(2):121-126.

[11] Yan N N,Wu B F,Chang S,et al.Evaluation of TRMM Precipitation Product for Meteorological Drought Monitoring in Hai Basin[C]//IOP Conference Series:Earth and Environmental Science.IOP Publishing,2014,17(1):012093.

[12] 中国国家标准化管理委员会.GB/T20481-2006气象干旱等级[S].北京:中国标准出版社,2006. Standardization Administration of the People's Republic of China.GB/T20481-2006 Classification of Meteorological Drought Category[S].Beijing:China Standard Publishing House,2006.

[13] Jia S F,Zhu W B,Lyu A F,et al.A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China[J].Remote Sensing of Environment,2011,115(12):3069-3079.

[14] Immerzeel W W,Rutten M M,Droogers P.Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula[J].Remote Sensing of Environment,2009,113(2):362-370.

[15] Duan Z,Bastiaanssen W G M.First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling——calibration procedure[J].Remote Sensing of Environment,2013,131:1-13.

[1] 秦大辉, 杨灵, 谌伦超, 段云飞, 贾宏亮, 李贞培, 马建琴. 基于多源数据的新疆干旱特征及干旱模型研究[J]. 自然资源遥感, 2022, 34(1): 151-157.
[2] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[3] 魏英娟, 刘欢. 北衙金矿床遥感矿化蚀变信息提取及找矿预测[J]. 自然资源遥感, 2021, 33(3): 156-163.
[4] 安健健, 孟庆岩, 胡蝶, 胡新礼, 杨健, 杨天梁. 基于Faster R-CNN的火电厂冷却塔检测及工作状态判定[J]. 国土资源遥感, 2021, 33(2): 93-99.
[5] 陈震, 夏学齐, 陈建平. 土地生态质量遥感评价模型与主控因子研究——以广安市为例[J]. 国土资源遥感, 2021, 33(1): 191-198.
[6] 董天成, 杨肖, 李卉, 张志, 齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取[J]. 国土资源遥感, 2021, 33(1): 129-137.
[7] 木哈代思·艾日肯, 张飞, 刘康, 阿依努尔·玉山江. 基于天宫二号及Landsat8城镇生态环境现状评价[J]. 国土资源遥感, 2020, 32(4): 209-218.
[8] 安全, 贺中华, 赵翠薇, 梁虹, 焦树林, 杨朝晖. 基于地貌视角的喀斯特流域水系分维估算方法适应性分析[J]. 国土资源遥感, 2019, 31(4): 104-111.
[9] 肖晨超, 吴小娟, 汪大明, 褚永彬. 基于烃类微渗漏的油气异常信息提取及远景区预测——以中非Salamat盆地为例[J]. 国土资源遥感, 2019, 31(4): 120-127.
[10] 姚本佐, 何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019, 31(3): 59-64.
[11] 马鸿霖, 贾伟洁, 付长亮, 李伟. 沙特阿拉伯吉达东北部地质构造与蚀变信息提取及找矿有利部位预测[J]. 国土资源遥感, 2019, 31(3): 174-182.
[12] 段俊斌, 彭鹏, 杨智, 刘乐. 基于ASTER数据的多金属成矿有利区预测[J]. 国土资源遥感, 2019, 31(3): 193-200.
[13] 阿茹罕, 何芳, 王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[14] 谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2): 38-43.
[15] 董立新. 三峡库区森林叶面积指数多模型遥感估算[J]. 国土资源遥感, 2019, 31(2): 73-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发