Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (2): 84-90    DOI: 10.6046/gtzyyg.2016.02.14
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
林火烈度遥感评估指数适应性分析
谭柳霞1,2, 曾永年1,2, 郑忠1,2
1. 中南大学地球科学与信息物理学院, 长沙 410083;
2. 中南大学空间信息 技术与可持续发展研究中心, 长沙 410083
An adaptability analysis of remote sensing indices in evaluating fire severity
TAN Liuxia1,2, ZENG Yongnian1,2, ZHENG Zhong1,2
1. School of Geosciences and Geomatics, Central South University, Changsha 410083, China;
2. Center for Geomatics and Sustainable Development Research, Central South University, Changsha 410083, China
全文: PDF(4308 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

科学合理地定量评估林火烈度,对揭示林火干扰下森林生态系统的变化,以及植被的恢复与管理具有重要意义。以美国科罗拉多大峡谷国家公园北缘的Poplar Fire为实验区,利用Landsat5 TM影像,结合实地调查的综合火烧指数(composite burn index,CBI),分析评价了归一化差值植被指数(normalized difference vegetation index,NDVI),归一化火烧指数(normalized burn ration,NBR),差分归一化植被指数(differenced normalized difference vegetation index,ΔNDVI)和差分归一化火烧指数(differenced normalized burn ration,ΔNBR)4种遥感指数对林火烈度评估的适应性。结果表明,4种遥感指数对识别不同等级林火烈度存在一定的差异。在未过火区和轻度火灾区,单一遥感指数的精度略高于差分遥感指数,其中NBR的提取精度最高,分别达到了66.7%和80%; 在中度火灾区和重度火灾区,差分遥感指数的精度高于单一遥感指数,ΔNBR的提取精度最高,分别达到了100%和90%。总体上,基于差分遥感指数的林火烈度制图精度总体高于单一遥感指数,其中ΔNBR的总体制图精度最高,达到了 86.2%。因此,ΔNBR是林火烈度分析与评估的适宜遥感指数。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈诚
赵书河
关键词 TRMM干旱监测有效性验证Pa指数Z指数    
Abstract

Performing quantitative evaluation of forest fire severity scientifically and reasonably is helpful to revealing the changing of forest ecosystems under fire, and is also of great significance for studying the vegetation recovery and management. Taking the north rim of Grand Canyon National Park in USA as the study area, combined with the composite burn index (CBI) after field survey, the authors used Landsat5 TM images of Poplar Fire to analyze the applicability of NDVI, NBR, ΔNDVI and ΔNBR so as to evaluate fire severity. According to the result obtained, there is some difference between the four remote sensing indices in identifying forest fire intensity of different levels. For non-fire and light fire, indices from a uni-temporal can perform better than indices from bi-temporal (pre and post fire), and NBR has the highest accuracy up to 66.7% and 80%, respectively; on the contrary, for moderate fire and severe fire, indices from bi-temporal (pre and post fire) can perform better than indices from a uni-temporal, and ΔNBR outperformed the others, because it considers only indices difference resulting from change of vegetation situation and environmental factors caused by forest fire and not affected by surroundings; it has high accuracy of evaluating moderate fire and severe fire, with the accuracy up to 100% and 90%. In general, indices from bi-temporal (pre and post fire) have higher overall accuracy than indices from a uni-temporal, and ΔNBR has the highest overall accuracy in evaluating fire severity with the accuracy up to 86.2%, which is hence the most suitable remote sensing indices to evaluate fire severity in this study area.

Key wordsTRMM    drought monitoring    validity checking    Pa index    Z index
收稿日期: 2014-12-16      出版日期: 2016-04-14
:  TP751.1  
基金资助:

国家自然科学基金项目"基于多智能体启发式算法的土地利用空间配量模拟研究"(编号: 41171326)、"基于多智能体动态交换互决策过程的城市扩展时空模拟研究"(编号: 41201386)及"基于蚁群智能的地铁选址建模研究"(编号: 41201383)共同资助。

通讯作者: 曾永年(1959-),男,博士,教授,主要从事遥感与地理信息系统及其环境变化研究。 Email: ynzeng@mail.csu.edu.cn。
作者简介: 谭柳霞 (1990- ),女,硕士研究生,现从事遥感和GIS应用研究。Email: liuxiakddx08@163.com。
引用本文:   
谭柳霞, 曾永年, 郑忠. 林火烈度遥感评估指数适应性分析[J]. 国土资源遥感, 2016, 28(2): 84-90.
TAN Liuxia, ZENG Yongnian, ZHENG Zhong. An adaptability analysis of remote sensing indices in evaluating fire severity. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 84-90.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.02.14      或      https://www.gtzyyg.com/CN/Y2016/V28/I2/84

[1] 胡海清.林火生态与管理[M].北京:中国林业出版社,2005. Hu H Q.Forest Ecology and Management[M].Beijing:China Forestry Publishing House,2005.

[2] Morisette J T,Giglio L,Csiszar I,et al.Validation of MODIS active fire detection products derived from two algorithms[J].Earth Interact,2005,9(9):1-25.

[3] 常禹,陈宏伟,胡远满,等.林火烈度评价及其空间异质性研究进展[J].自然灾害学报,2012,21(2):28-34. Chang Y,Chen H W,Hu Y M,et al.Advances in the assessment of forest fire severity and its spatial heterogeneity[J].Journal of Natural Disasters,2012,21(2):28-34.

[4] 雷成亮.大兴安岭森林火烈度遥感估测方法研究[D].哈尔滨:东北林业大学,2012. Lei C L.Estimating Burned Severity With Multiple Methods in Da Hinggan Mountains[D].Harbin:Northeast Forestry University,2012.

[5] Verbyla D L,Kasischke E S,Hoy E E.Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+data[J].International Journal of Wildland Fire,2008,17:527-534.

[6] Wimberly M C,Reilly M J.Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery[J].Remote Sensing of Environment,2007,108(2):189-197.

[7] Epting J,Verbyl A D,Sorbel B.Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+[J].Remote Sensing of Environment,2005,96(3/4):328-339.

[8] Otto R,García-del-Rey E,Muñoz P G,et al.The effect of fire severity on first-year seedling establishment in a Pinus canariensis forest on Tenerife,Canary Islands[J].European Journal of Forest Research,2010,129(4):499-508.

[9] Soverel N O,Perrakis D B P,Coops N C C.Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada[J].Remote Sensing of Environment,2010,114(9):1896-1909.

[10] van Wagtendonk J W,Root R R,Key C H.Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity[J].Remote Sensing of Environment,2004,92(3):397-408.

[11] Miller J D,Knapp E E,Key C H,et al.Calibration and validation of the relative differenced Normalized Burn Ratio(RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains,California,USA[J].Remote Sensing of Environment,2009,113(3):645-656.

[12] Garcia M L,Caselles V.Mapping burns and natural reforestation using thematic Mapper data[J].Geocarto International,1991,6(1):31-37.

[13] Key C H,Benson N C.The normalized burn ratio(NBR):A landsat TM radiometric measure of burn severity[Z].Bozeman,MT:US Dept.Interior,Northern Rocky Mountain Sci.Center,1999.

[14] Lozano F J,Suárez-Seoane S,de Luis E.Assessment of several spectral indices derived from multi-temporal Landsat data for fire occurrence probability modelling[J].Remote Sensing of Environment,2007,107(4):533-544.

[15] Allen J L,Sorbel B.Assessing the differenced normalized burn ratio's ability to map burn severity in the boreal forest and Tundra Ecosystems of Alaska's National parks[J].International Journal of Wildland Fire,2008,17(4):463-475.

[16] Escuin S,Navarro R,Fernández P.Fire severity assessment by using NBR(normalized burn ratio)and NDVI(normalized difference vegetation index)derived from LANDSAT TM/ETM images[J].International Journal of Remote Sensing,2008,29(4):1053-1073.

[17] Hardtkea L A,Blancoa P D,del Vallea H F,et al.Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery[J].International Journal of Applied Earth Observation and Geoinformation,2015,38:25-35.

[18] Ireland G,Petropoulos G P.Exploring the relationships between post-fire vegetation regeneration dynamics,topography and burn severity:A case study from the Montane Cordillera Ecozones of Western Canada[J].Applied Geography,2015,56:232-248.

[19] Morrison K D,Kolden C A.Modeling the impacts of wildfire on runoff and pollutant transport from coastal watersheds to the nearshore environment[J].Journal of Environmental Management,2015,151:113-123.

[20] 杨伟.基于遥感的黑龙江流域火烧迹地及其植被恢复研究[D].长春:中科院东北地理与农业生态研究所,2013. Yang W.The Study on Burned Area Mapping and Vegetation Regeneration Based on Remote Sensing Data in Heilongjiang Basin[D].Changchun:Northeast Institute of Geography and Agro ecology of Chinese Academy of Sciences,2013.

[21] 王晓莉,王文娟,常禹,等.基于NBR指数分析大兴安岭呼中森林过火区的林火烈度[J].应用生态学报,2013,24(4):967-974. Wang X L,Wang W J,Chang Y,et al.Fire severity of burnt area in Huzhong forest region of Great Xing'an Mountains,Northeast China based on normalized burn ratio analysis[J].Chinese Journal of Applied Ecology,2013,24(4):967-974.

[22] 吴立叶,沈润平,李鑫慧,等.不同遥感指数提取林火迹地研究[J].遥感技术与应用,2014,29(4):567-574. Wu L Y,Shen R P,Li X H,et al.Evaluating different remote sensing indexes for forest burn scars extraction[J].Remote Sensing Technology and Application,2014,29(4):567-574.

[23] 杨辰,沈润平.森林扰动遥感监测研究进展[J].国土资源遥感,2015,27(1):1-8.doi:10.6046/gtzyyg.2015.01.01. Yang C,Shen R P.Progress in the study of forest disturbance by remote sensing[J].Remote Sensing for Land and Resources,2015,27(1):1-8.doi:10.6046/gtzyyg.2015.01.01.

[24] 田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1988,13(4),328-333. Tian Q J,Min X J.Advances in study on vegetation indices[J].Advance in Earth Sciences,1988,13(4),328-333.

[25] Key C H,Benson N C.Landscape assessment[C]//Lutes D C,Keane R E,Caratti J F,et al.,eds.FIREMON:Fire Effects Monitoring and Inventory System.Fort Collins,CO:USDA Forest Service,Rocky Mountain Research Station,2006:1-55.

[26] Kasischke E S,Turetsky M R,Ottmar R D,et al.Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests[J].International Journal of Wildland Fire,2008,17:515-526.

[27] Hoy E E,French N H F,Turetsky M R,et al.Evaluating the potential of landsat TM/ETM+imagery for assessing fire severity in Alaskan black spruce forests[J].International Journal of Woodland Fire,2008,17(4):500-514.

[28] White J D,Ryan K C,Key C C,et al.Remote sensing of forest fire severity and vegetation recovery[J].International Journal of Wildland Fire,1996,6:125-136.

[29] Brewer C K,Winne J C,Redmond R L,et al.Classifying and mapping wildfire severity:A comparison of methods[J].Photogrammetric Engineering & Remote Sensing,2005,71(11):1311-1320.

[1] 秦大辉, 杨灵, 谌伦超, 段云飞, 贾宏亮, 李贞培, 马建琴. 基于多源数据的新疆干旱特征及干旱模型研究[J]. 自然资源遥感, 2022, 34(1): 151-157.
[2] 范田亿, 张翔, 黄兵, 钱湛, 姜恒. 湘江流域TRMM卫星降水产品降尺度研究与应用[J]. 自然资源遥感, 2021, 33(4): 209-218.
[3] 晏红波, 韦晚秋, 卢献健, 黄俞惠. 基于TRMM数据与SPI指数的广西地区旱涝演变分析[J]. 国土资源遥感, 2021, 33(1): 158-166.
[4] 杜方洲, 石玉立, 盛夏. 基于深度学习的TRMM降水产品降尺度研究——以中国东北地区为例[J]. 国土资源遥感, 2020, 32(4): 145-153.
[5] 熊俊楠, 李伟, 刘志奇, 程维明, 范春捆, 李进. 基于GWR模型的青藏高原地区TRMM数据降尺度研究[J]. 国土资源遥感, 2019, 31(4): 88-95.
[6] 孟丹, 宫辉力, 李小娟, 杨思遥. 北京7·21暴雨时空分布特征及热岛-雨岛响应关系[J]. 国土资源遥感, 2017, 29(1): 178-185.
[7] 卢新玉, 魏鸣, 王秀琴, 向芬. TRMM-3 B43降水产品在新疆地区的适用性研究[J]. 国土资源遥感, 2016, 28(3): 166-173.
[8] 陈诚, 赵书河. 基于TRMM降雨数据的中国黄淮海地区干旱监测分析[J]. 国土资源遥感, 2016, 28(1): 122-129.
[9] 杨立娟, 武胜利, 张钟军. 利用主被动微波遥感结合反演土壤水分的理论模型分析[J]. 国土资源遥感, 2011, 23(2): 53-58.
[10] 高磊, 覃志豪, 卢丽萍. 基于植被指数和地表温度特征空间的农业干旱监测模型研究综述[J]. 国土资源遥感, 2007, 19(3): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发