Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (2): 1-7    DOI: 10.6046/gtzyyg.2016.02.01
  综述 本期目录 | 过刊浏览 | 高级检索 |
矿山环境高光谱遥感监测研究进展
李万伦1, 甘甫平2
1. 中国地质图书馆, 北京 100083;
2. 中国国土资源航空物探遥感中心, 北京 100083
Progress in hyperspectral research and monitoring in mine environment
LI Wanlun1, GAN Fuping2
1. National Geological Library of China, Beijing 100083, China;
2. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
全文: PDF(800 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

在综合分析大量文献的基础上,归纳了高光谱技术在矿山次生矿物识别、重金属浓度反演、pH值定量估算、污染植被信息提取等方面的应用,总结了基于高光谱遥感提取有关氧化和脱水状态动态分析、气候变化追踪等信息的研究进展,展示了高光谱技术在矿山环境调查监测领域的广阔应用前景。研究表明,含铁硫化物及其氧化矿物标准光谱库的建立具有重大意义,推动了酸性矿山环境高光谱遥感研究; 对矿山环境地质作用与光谱响应之间关系的认识逐渐深入,促进了高光谱地质应用模型的开发; 高光谱数据蕴含着丰富的矿山环境地学信息,具备提取多方面重要信息的潜力。最后结合当前欧美发达国家开发高光谱小卫星的实际,指出今后矿山环境高光谱遥感研究将从矿物及矿物成分识别转向矿物形成时的物理化学性质反演、从短期调查向长期监测、从航空向航天、从单一矿山向成矿区带或大型矿集区转变。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦其松
张景发
蒋洪波
宿渊源
王旭
关键词 白鹿中学三维激光扫描(TLS)震害信息提取三维建模    
Abstract

Based on an analysis of large quantities of literature, this paper describes briefly the application of hyperspectral technique to mine secondary mineral identification, reversion of heavy metal concentrations, pH prediction and contaminated vegetation detection, and then summarizes the research progress in such aspects as oxidation/hydration level and climate change through hyperspectral information extraction, thus showing widespread application prospect of hyperspectral technique in mine environmental survey. Some conclusions have been reached: the establishment of standard spectral database of Fe-bearing sulfide and its oxidized products is greatly helpful to hyperspectral research on acid mine environment, the understanding of geological process in mine environment and their spectral response helps to develop hyperspectral geological application model, and the hyperspectral data contain rich information about mine environment and has significant potential of extracting many kinds of information. According to the practice of developing hyperspectral satellite in developed countries such as countries in Europe and America, the authors point out that future hyperspectral research on mine environment will tend to experience the conversion from physical/chemical identification of minerals and their components to the physical/chemical property inversion during the formation of the minerals, from short term investigation to long term investigation, from aeroplane to hyperspectral sensor aboard on spaceship, and from single mines to large ore concentration areas.

Key wordsBailu middle school    terrestrial laser scanning(TLS)    earthquake damage extraction    3D modeling
收稿日期: 2014-12-12      出版日期: 2016-04-14
:  TP79  
基金资助:

中国地质调查局项目"地质勘查遥感系统集成与综合应用示范"(编号: 1212011120226)和高分国土资源遥感应用示范系统1期项目(编号: 04-Y30B01-9001-12/15)共同资助。

作者简介: 李万伦(1972-),男,博士,高级工程师,主要从事地学情报研究。Email: lunwl@sina.com。
引用本文:   
李万伦, 甘甫平. 矿山环境高光谱遥感监测研究进展[J]. 国土资源遥感, 2016, 28(2): 1-7.
LI Wanlun, GAN Fuping. Progress in hyperspectral research and monitoring in mine environment. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 1-7.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.02.01      或      https://www.gtzyyg.com/CN/Y2016/V28/I2/1

[1] Plumlee G S,Logsdon M J,Filipek L F.The environmental geochemistry of mineral deposits, Part A.Processes,techniques,and health issues[J].Reviews in Economic Geology,1999,6A:71-116.

[2] Gomes M E P,Favas P J C.Mineralogical controls on mine drainage of the abandoned Ervedosa tin mine in north-eastern Portugal[J].Applied Geochemistry,2006,21(8):1322-1334.

[3] Farrand W H,Harsanyi J C.Mineralogic variations in fluvial sediments contaminated by mine tailings as determined from AVIRIS data,Coeur d'Aldene river, Idaho[C]//Proceedings of AVIRIS workshop.Pasadena,CA,USA:[s.n.],1995:47-50.

[4] Clark R N,Vance J S,Livo K E.Mineral mapping with imaging spectroscopy:The Ray mine,AZ[C]//Green R O.Proceedings of the 7th Annual JPL Airborne Earth Science Workshop.Pasadena,CA,USA:JPL Publication,1998:67-75.

[5] Swayze G A,Clark R N,Pearson R M,et al.Mapping acid-generating minerals at the California Gulch Superfund site in Leadville,Colorado using imaging spectroscopy[C]//Proceedings of the 6th Annual JPL Airborne Earth Science Workshop.Pasadena,CA,USA:Jet Proplusion Laboratory Publication,1996.

[6] Swayze G A,Smith K S,Clark R N,et al.Using imaging spectroscopy to map acidic mine waste[J].Environmental Science and Technology,2000,34(1):47-54.

[7] Swayze G A,Clark R N,Smith K S,et al.Using imaging spectroscopy to cost-effectively locate acid-generating minerals at mine sites:An example from the California Gulch Superfund Site[C]//Paper presented at the Airborne Visible/Infrared Imaging Spectrometer(AVIRIS).Leadville,Colorado:JPL Airborne Geoscience Workshop,1997.

[8] Richter N,Staenz K,Kaufmann H.Spectral unmixing of airborne hyperspectral data for baseline mapping of mine tailings areas[J].International Journal of Remote Sensing,2008,29(13),3937-3956.

[9] Im J,Jensen J R,Jensen R R,et al.Vegetation cover analysis of hazardous waste sites in utah and Arizona using hyperspectral remote sensing[J].Remote Sensing,2012,4(2):327-353.

[10] 聂洪峰,杨金中,王晓红,等.矿产资源开发遥感监测技术问题与对策研究[J].国土资源遥感,2007,19(4):11-13.doi:10.6046/gtzyyg.2007.04.03. Nie H F,Yang J Z,Wang X H,et al.The problems in the remote sensing monitoring technology for the exploration of mineral resources and the countermeasures[J].Remote Sensing for Land and Resources,2007,19(4):11-13.doi:10.6046/gtzyyg.2007.04.03.

[11] 陈伟涛,张志,王焰新.矿山开发及矿山环境遥感探测研究进展[J].国土资源遥感,2009,21(2):1-8.doi:10.6046/gtzyyg.2009.02.01. Chen W T,Zhang Z,Wang Y X.Advances in remote sensing-based detecting of mine exploitation and mine environment[J].Remote Sensing for Land and Resources,2009,21(2):1-8.doi:10.6046/gtzyyg.2009.02.01.

[12] 陈伟涛,张志,王焰新,等.矿山地质环境遥感监测方法初探[J].地质通报,2010,29(2/3):457-462. Chen W T,Zhang Z,Wang Y X,et al.Preliminary study on methods of geo-environment monitoring in minesites using remote sensing technique[J].Geological Bulletin of China,2010,29(2/3):457-462.

[13] 甘甫平,刘圣伟,周强.德兴铜矿矿山污染高光谱遥感直接识别研究[J].地球科学-中国地质大学学报,2004,29(1):119-126. Gan F P,Liu S W,Zhou Q.Identification of mining pollution using Hyperion data at Dexing Copper Mine in Jiangxi Province,China[J].Earth Science-Journal of China University of Geosciences,2004,29(1):119-126.

[14] 甘甫平,王润生.高光谱遥感技术在地质领域中的应用[J].国土资源遥感,2007,19(4):57-60.doi:10.6046/gtzyyg.2007.04.13. Gan F P,Wang R S.The application of the hyperspectral imaging technique to geological investigation[J].Remote Sensing for Land and Resources,2007,19(4):57-60.doi:10.6046/gtzyyg.2007.04.13.

[15] Paniagua L,Bachmann M,Fischer C,et al.Monitoring mining rehabilitation development according to methods derived from imaging spectroscopy,case study in the Sotiel-Migollas Mine complex,Southern Spain[C]//Proceedings of 6th EARSeL SIG IS Workshop Imaging Spectroscopy:Innovative Tool for Scientific and Commercial Environmental Applications.Tel Aviv,Israel:EARSeL,2009.

[16] Riaza A,García-Meléndez E,Mueller A.Spectral identification of pyrite mud weathering products:A field and laboratory evaluation[J].International Journal of Remote Sensing,2011,32(1):185-208.

[17] Crowley J K,Williams D E,Hammarstrom J M,et al.Spectral reflectance properties(0.4~2.5 m)of secondary Fe-oxide,Fe-hydroxide,and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes[J].Geochemistry:Exploration,Environment,Analysis,2003,3:219-228.

[18] Clark R N,Swayze G A,Wise R,et al.USGS digital spectral library splib06a:U.S.Geological Survey,Digital Data Series 231[EB/OL].[2007] .http://speclab.cr.usgs.gov/spectral.lib06.

[19] Riaza A,Ong C,Müller C A.Dehydration and oxidation of pyrite mud and potential acid mine drainage using hyperspectral DAIS 7915 data(Aznalcóllar,Spain)[C]//The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,Volume 34,Part XXX,2006.

[20] Shang J,Morris B,Howarth P,et al.Mapping mine tailing surface mineralogy using hyperspectral remote sensing[J].Canadian Journal of Remote Sensing:Journal Canadien de Télédétection,2009,35(1):126-141.

[21] Choe E,van der Meer F,van Ruitenbeek F,et al.Mapping of heavy metal pollution in stream sediments using combined geochemistry,field spectroscopy,and hyperspectral remote sensing:A case study of the Rodalquilar mining area,SE Spain[J].Remote Sensing of Environment,2008,112(7):3222-3233.

[22] Kemper T,Sommer S.Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy[J].Environmental Science and Technology,2002,36(12):2742-2747.

[23] Kopacková V,Chevrel S,Bourguignon A.Spectroscopy as a tool for geochemical modeling[C]//Michel U,Civco D L.Proceedings of SPIE 8181,Earth Resources and Environmental Remote Sensing/GIS Applications II.Prague:SPIE,2011,8181:818106.

[24] Duke E F.Near infrared spectra of muscovite,Tschermak substitution,and metamorphic reaction progress:Implications for remote sensing[J].Geology,1994,22:621-624.

[25] Percival J B,White H P,Goodwin T A,et al.Mineralogy and spectral reflectance of soils and tailings from historical gold mines,Nova Scotia[J].Geochemistry:Exploration,Environment,Analysis,2013,14(1),doi:10.1144/geochem2011-071.

[26] Montero I C,Brimhall G H,Alpers C N,et al.Characterization of waste rock associated with acid drainage at the Penn Mine,California,by ground-based visible to short-wave infrared reflectance spectroscopy assisted by digital mapping[J].Chemical Geology,2005,215(1/4):453-472.

[27] Ong C,Cudahy T J.Deriving quantitative monitoring data related to acid drainage using multi-temporal hyperspectral data[C]//2nd EARSEL Workshop on Imaging Spectroscopy.Paris:EARSEL,2002.

[28] Jnsson J.Phase Transformation and Surface Chemistry of Secondary Iron Minerals Formed from Acid Mine Drainage[D].Swedish:Ume University,2003.

[29] Bigham J M,Schwertmann U,Pfab G.Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage[J].Applied Geochemistry,1996,11(6):845-849.

[30] Kopa?ková V.Using multiple spectral feature analysis for quantitative pH mapping in a mining environment[J].International Journal of Applied Earth Observation and Geoinformation,2014,28:28-42.

[31] Zabcic N,Ong C,Müller A,et al.Mapping pH from Airborne Hyperspectral Data at the Sotiel-Migollas Mine,Calanas,Spain[C]//Proceedings of 4th EARSeL Workshop on Imaging Spectroscopy.Warsaw,Poland:Universidad de Varsovia,2005:467-472.

[32] Zabcic N,Rivard B,Ong C,et al.Using airborne hyperspectral data to characterize the surface pH and mineralogy of pyrite mine tailings[J].International Journal of Applied Earth Observation and Geoinformation,2014,32:154-162.

[33] Quental L,Sousa A J,Marsh S,et al.Identification of materials related to acid mine drainage using multi-source spectra at S.Domingos Mine,southeast Portugal[J].International Journal of Remote Sensing,2013,34(6):1928-1948.

[34] Buckingham W F,Sommer S E.Mineralogical characterization of rock surfaces formed by hydrothermal alteration and weathering;application to remote sensing[J].Economic Geology,1983,78(4):664-674.

[35] 刘圣伟,甘甫平,王润生.用卫星高光谱数据提取德兴铜矿区植被污染信息[J].国土资源遥感,2004,16(1):6-10.doi:10.6046/gtzyyg.2004.01.02. Liu S W,Gan F P,Wang R S.The application of Hyperion data to extracting contamination information of vegetation in the Dexing Copper Mine,Jiangxi Province,China[J].Remote Sensing for Land and Resources,2004,16(1):6-10.doi:10.6046/gtzyyg.2004.01.02.

[36] Noomen M F.Hyperspectral Reflectance of Vegetation Affected by Underground Hydrocarbon Gas Seepage[D].Enschede:International Institute for Geo-information Science & Earth Observation.2007:145.

[37] Im J,Jensen J R.Hyperspectral remote sensing of vegetation[J].Geography Compass,2008,2(6):1943-1961.

[38] Tilling A,O'Leary G J,Ferwerda J G,et al.Remote sensing of nitrogen and water stress in wheat[J].Field Crops Research,2007,104(1/3):77-85.

[39] Goodenough D,Chen H,Dyk A,et al.Multisensor data fusion for aboveground carbon estimation[C]//Proceedings of XXVIII General Assembly of the International Union of Radio Science(URSI).New Delhi,India:[s.n.],2005:1-4.

[40] Hansen P M,Schjoerring J K.Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J].Remote Sensing of Environment,2003,86(4):542-553.

[41] Im J,Jensen J R,Coleman M,et al.Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments[J].Geocarto International,2009,24(4):293-312.

[42] Maire G L,Franois C,Soudani K,et al.Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area,leaf area index,and leaf canopy biomass[J].Remote Sensing of Environment,2008,112(10):3846-3864.

[43] White H P,Omari K.Advanced radiative transfer modelling for information extraction[EB/OL].http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/earth-sciences/files/pdf/geomatics/flair_e.pdf.

[44] Farifteh J,Nieuwenhuis W,García-Meléndez E.Mapping spatial variations of iron oxide by-product minerals from EO-1 Hyperion[J].International Journal of Remote Sensing,2013,34(2):682-699.

[45] Bachmann M,Müller A,Habermeyer M,et al.An iterative unmixing approach in support of fractional cover estimation in semi-arid environments[C]//Ehlers M,Posa F,Kaufmann H J.Proceedings of SPIE Remote Sensing for Environmental Monitoring,GIS Applications,and Geology IV.Maspalomas:SPIE,2004,5574:205.

[46] Zabcic N.Derivation of pH-Values Based on Mineral Abundances over Pyrite Mining Areas with Airborne by Hyperspectral Data(Hymap) of Sotiel-Migollas-Mine Complex[D].Canada:University of Alberta,2008.

[47] Riaza A,Müller A.Hyperspectral remote sensing monitoring of pyrite mine wastes:A record of climate variability(Pyrite Belt,Spain)[J].Environmental Earth Sciences,2010,61(3):575-594.

[48] Riaza A,Buzzi J,García-Meléndez E,et al.Monitoring the extent of contamination from acid mine drainage in the iberian pyrite belt(SW Spain)using hyperspectral imagery[J].Remote Sensing,2011,3(10):2166-2186.

[1] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[2] 连会青, 孟璐, 韩瑞刚, 杨艺, 余标. 基于无人机遥感的地质信息提取——以柳江盆地为例[J]. 国土资源遥感, 2020, 32(3): 136-142.
[3] 余忠迪, 李辉, 巴芳, 王朝阳. 基于消费者级无人机的城市三维建模[J]. 国土资源遥感, 2018, 30(2): 67-72.
[4] 焦其松, 张景发, 蒋洪波, 宿渊源, 王旭. 基于TLS技术的典型建筑物震害信息三维建模分析——以彭州市白鹿中学为例[J]. 国土资源遥感, 2016, 28(1): 166-171.
[5] 马静, 刘祥磊. 三维可视化在城市旧区改造建设中的应用[J]. 国土资源遥感, 2014, 26(3): 170-174.
[6] 杨德贺, 陈宜金, 杨溪, 吕京国, 张子昕, 张帅. 面向震害信息提取的多源遥感图像自动配准[J]. 国土资源遥感, 2013, 25(3): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发