Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (2): 8-13    DOI: 10.6046/gtzyyg.2016.02.02
  综述 本期目录 | 过刊浏览 | 高级检索 |
多光谱遥感影像植被覆盖分类研究进展
闫利, 江维薇
武汉大学测绘学院, 武汉 430079
Progress in the study of vegetation cover classification of multispectral remote sensing imagery
YAN Li, JIANG Weiwei
School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
全文: PDF(759 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

利用多光谱遥感影像进行植被覆盖分类是目前遥感技术应用的热点研究领域之一。在广泛调研文献的基础上,综述了近年来多光谱遥感影像植被分类研究现状和进展,较全面深入地分析了各种植被分类特征、分类算法的优缺点、适应性和应用情况,指出了当前面临的难点和挑战,并对未来发展趋势进行了展望。未来多光谱遥感影像的植被分类不仅要从分类算法上进行创新,提高分类器的自动化程度、分类效率和学习速度,扩大适用范围,增强鲁棒性,而且同样不能忽视对植被分类新特征的挖掘,提高特征的可分性,融合多源数据、利用多时相影像、挖掘更多新特征参与植被分类是未来的发展趋势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温礼
吴海平
姜方方
苏伟
朱德海
张超
关键词 围填海遥感监测分类体系解译标志高分辨率遥感影像    
Abstract

Vegetation cover classification using multispectral remote sensing imagery is a hot research area, in which various new methods emerge endlessly. On the basis of reading a large number of references, the authors summarized in this paper the status and progress of vegetation cover classification with multispectral remote sensing imagery, analyzed advantages and disadvantages, adaptation and application of each vegetation classification feature and method, pointed out current difficulties and challenge, and predicted future development trend. The analysis suggests that future vegetation cover classification of multispectral remote sensing imagery needs not only innovation of classifier in the aspects of improvement of automation, efficiency, learning rate, adaptation and robustness, but also feature mining of vegetation classification. For the purpose of enhancing such aspects as using feature reparability and fusing multisource data, the adoption of multi-temporal images and the tapping of more new features in vegetation classification seem to be future trends.

Key wordsreclamation    remote sensing monitoring    classification system    interpretation criteria    high-resolution remote sensing image
收稿日期: 2014-10-18      出版日期: 2016-04-14
ZTFLH:  TP79  
通讯作者: 江维薇(1988-),女,博士研究生,主要从事遥感图像处理方面的研究。Email: 626834986@qq.com。     E-mail: 626834986@qq.com
作者简介: 闫利(1966-),男,教授,主要从事摄影测量、遥感图像处理和三维激光成像扫描测量技术的研究。Email: lyan@sgg.whu.edu.cn。
引用本文:   
闫利, 江维薇. 多光谱遥感影像植被覆盖分类研究进展[J]. 国土资源遥感, 2016, 28(2): 8-13.
YAN Li, JIANG Weiwei. Progress in the study of vegetation cover classification of multispectral remote sensing imagery. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 8-13.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.02.02      或      http://www.gtzyyg.com/CN/Y2016/V28/I2/8

[1] 李钰溦,贾坤,魏香琴,等.中国北方地区植被覆盖度遥感估算及其变化分析[J].国土资源遥感,2015,27(2):112-117.doi:10.6046/gtzyyg.2015.02.18. Li Y W,Jia K,Wei X Q,et al.Fractional vegetation cover estimation in northern China and its change analysis[J].Remote Sensing for Land and Resources,2015,27(2):112-117.doi:10.6046/gtzyyg.2015.02.18.

[2] 严婷婷,边红枫,廖桂项,等.森林湿地遥感信息提取方法研究现状[J].国土资源遥感,2014,26(2):11-18.doi:10.6046/gtzyyg.2014.02.03. Yan T T,Bian H F,Liao G X,et al.Research status of methods for mapping forested wetlands based on remote sensing[J].Remote Sensing for Land and Resources,2014,26(2):11-18.doi:10.6046/gtzyyg.2014.02.03.

[3] Kalliola R,Syrjanen K.To what extent are vegetation types visible in satellite imagery?[J].Annales Botanici Fennici,1991,28(1):45-57.

[4] Harvey K R,Hill G J E.Vegetation mapping of a tropical freshwater swamp in the Northern Territory,Australia:A comparison of aerial photography,Landsat TM and SPOT satellite imagery[J].International Journal of Remote Sensing,2001,22(15):2911-2925.

[5] 田新光,张继贤,张永红.基于IKONOS影像的海岸带土地覆盖分类[J].遥感信息,2007(5):44-47. Tian X G,Zhang J X,Zhang Y H.Land use/land cover classification of coastal zone using object oriented method based on IKONOS imagery[J].Remote Sensing Information,2007(5):44-47.

[6] 张友水,冯学智,都金康,等.IKONOS影像在城市绿地提取中的应用[J].地理研究,2004,23(2):274-280. Zhang Y S,Feng X Z,Du J K,et al.Study on extraction of urban green space from IKONOS remote sensing images[J].Geographical Research,2004,23(2):274-280.

[7] Zhang X Y,Feng X Z,Jiang H.Object-oriented method for urban vegetation mapping using IKONOS imagery[J].International Journal of Remote Sensing,2010,31(1/2):177-196.

[8] Baret F,Guyot G.Potentials and limits of vegetation indices for LAI and APAR assessment[J].Remote Sensing of Environment,1991,35(2/3):161-173.

[9] Daliman S,Rahman S A,Bakar S A,et al.Segmentation of oil palm area based on GLCM-SVM and NDVI[C]//Proceedings of the IEEE Region 10 Symposium.Kuala Lumpur:IEEE,2014:645-650.

[10] 黄秋燕,肖鹏峰,冯学智,等.一种基于TV-Gabor模型的高分辨率遥感图像农田信息提取方法[J].遥感信息,2014,29(2):79-84,90. Huang Q Y,Xiao P F,Feng X Z,et al.Cropland information extraction from high resolution remote sensing image based on TV-Gabor model[J].Remote Sensing Information,2014,29(2):79-84,90.

[11] Wu Y,Wang C H,Yu L,et al.Using MRF approach to wetland classification of high spatial resolution remote sensing imagery:A case study in Xixi Westland National Park,Hangzhou,China[C]//Proceedings of the Second IITA International Conference on Geoscience and Remote Sensing.Qingdao:IEEE,2010,2:525-528.

[12] 蔡学良,崔远来.基于异源多时相遥感数据提取灌区作物种植结构[J].农业工程学报,2009,25(8):124-130. Cai X L,Cui Y L.Crop planting structure extraction in irrigated areas from ulti-sensor and multi-temporal remote sensing data[J].Transactions of the Chinese Society of Agricultural Engineering,2009,25(8):124-130.

[13] Zhong L H,Gong P,Biging G S.Efficient corn and soybean mapping with temporal extendability:A multi-year experiment using Landsat imagery[J].Remote Sensing of Environment,2014,140:1-13.

[14] Murthy C S,Raju P V,Badrinath K V S.Classification of wheat crop with multi-temporal images:Performance of maximum likelihood and artificial neural networks[J].International Journal of Remote Sensing,2003,24(23):4871-4890.

[15] Ayhan E,Kansu O.Analysis of image classification methods for remote sensing[J].Experimental Techniques,2012,36(1):18-25.

[16] Szuster B W,Chen Q,Borger M.A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones[J].Applied Geography,2011,31(2):525-532.

[17] Filippi A M,Jensen J R.Fuzzy learning vector quantization for hyperspectral coastal vegetation classification[J].Remote Sensing of Environment,2006,100(4):512-530.

[18] Lindeman M,Liu J,Qi J,et al.Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data[J].International Journal of Remote Sensing,2004,25(9):1685-1700.

[19] Gopal S,Woodcock C.Remote sensing of forest change using artificial neural networks[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(2):398-404.

[20] Hilbert D W,Ostendorf B.The utility of artificial neural networks for modelling the distribution of vegetation in past,present and future climates[J].Ecological Modelling,2001,146(1/3):311-327.

[21] Kuemmerle T,Chaskovskyy O,Knom J,et al.Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007[J].Remote Sensing of Environment,2009,113(6):1194-1207.

[22] Su L H.Optimizing support vector machine learning for semi-arid vegetation mapping by using clustering analysis[J].ISPRS Journal of Photogrammetry and Remote Sensing,2009,64(4):407-413.

[23] 王修信,秦丽梅,罗玲,等.遥感图像森林林型SVM分类的多特征选择[J].计算机工程与应用,2013,49(20):259-262. Wang X X,Qin L M,Luo L,et al.Multi-feature selection in remote sensing forest species classification with SVM[J].Computer Engineering and Applications,2013,49(20):259-262.

[24] Joy S M,Reich R M,Reynolds R T.A non-parametric,supervised classification of vegetation types on the Kaibab National Forest using decision trees[J].International Journal of Remote Sensing,2003,24(9):1835-1852.

[25] De Colstoun E B,Story M H,Thompson C,et al.Vegetation mapping using multi-temporal ETM+ data and a decision tree classifier[C]//2002 IEEE International Geoscience and Remote Sensing Symposium.Toronto,Ontario,Canada:IEEE,2002,5:2890-2892.

[26] 孙小添,邢艳秋,李增元,等.基于MODIS影像的决策树森林类型分类研究[J].西北林学院学报,2013,28(6):139-144. Sun X T,Xing Y Q,Li Z Y,et al.Forest type classification by decision tree based on MODIS images[J].Journal of Northwest Forestry University,2013,28(6):139-144.

[27] 张雪红.基于知识与规则的红树林遥感信息提取[J].南京信息工程大学学报:自然科学版,2011,3(4):341-345. Zhang X H.Remote sensing information extraction of mangrove based on knowledge and rules[J].Journal of Nanjing University of Information Science & Technology:Natural Science Edition,2011,3(4):341-345.

[28] 甘淑,袁希平,何大明.遥感专家分类系统在滇西北植被信息提取中的应用试验研究[J].云南大学学报:自然科学版,2003,25(6):553-557. Gan S,Yuan X P,He D M.An application of vegetation classification in Northwest Yunnan with remote sensing expert classifier[J].Journal of Yunnan university:Natural sciences edition,2003,25(6):553-557.

[29] 蓝晓丹.面向对象的SPOT5遥感图像多分类器森林分类研究[D].南宁:广西大学,2010. Lan X D.Multiple Classier Combination Forest Classification of SPOT5 Remote Sensing Image Based on Object-oriented Approach[D].Nanning:Guangxi University,2010.

[30] 宋永昌.中国常绿阔叶林分类试行方案[J].植物生态学报,2004,28(4):435-448. Song Y C.Tentative classification scheme of evergreen broad-leaved forests of china[J].Acta Phytoecologica Sinica,28(4):435-448.

[31] Heinl M,Walde J,Tappeiner G,et al.Classifiers vs input variables-The drivers in image classification for land cover mapping[J].International Journal of Applied Earth Observation and Geoinformation,2009,11(6):423-430.

[32] Wilkinson G G.Results and implications of a study of fifteen years of satellite image classification experiments[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):433-440.

[33] 董广军,张永生,范永弘.PHI高光谱数据和高空间分辨率遥感图像融合技术研究[J].红外与毫米波学报,2006,25(2):123-126. Dong G J,Zhang Y S,Fan Y H.Image fusion for hyperspectral date of PHI and high-resolution aerial image[J].Journal of Infrared and Millimeter Waves,2006,25(2):123-126.

[34] 郭铌.植被指数及其研究进展[J].干旱气象,2003,21(4):71-75. Guo N.Vegetation index and its advances[J].Arid Meteorology,2003,21(4):71-75.

[35] Datcu M,Seidel K.Human-centered concepts for exploration and understanding of earth observation images[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):601-609.

[36] 舒宁.关于遥感影像处理智能系统的若干问题[J].武汉大学学报:信息科学版,2011,36(5):527-530. Shu N.Some aspects of intelligent system for remote sensing image processing[J].Geomatics and Information Science of Wuhan University,2011,36(5):527-530.

[37] Lu D S,Weng Q H.A survey of image classification methods and techniques for improving classification performance[J].International Journal of Remote Sensing,2007,28(5):823-870.

[38] Cakir H I,Khorram S,Nelson S A.Correspondence analysis for detecting land cover change[J].Remote Sensing of Environment,2006,102(3):306-317.

[39] Zheng C H,Zeng C S,Chen Z Q,et al.A study on the changes of landscape pattern of estuary wetlands of the Minjiang River[J].Wetland Science,2006,4(1):29-34.

[40] Schroeder T A,Cohen W B,Song C H,et al.Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon[J].Remote Sensing of Environment,2006,103(1):16-26.

[41] Cohen Y,Shoshany M.Integration of remote sensing,GIS and expert knowledge in national knowledge-based crop recognition in Mediterranean environment[J].International Archives of Photogrammetry and Remote Sensing,2000,33:280-286.

[42] Raclot D,Colin F,Puech C.Updating land cover classification using a rule-based decision system[J].International Journal of Remote Sensing,2005,26(7):1309-1321.

[43] Recio J A,Hermosilia T,Ruiz L A,et al.Analysis of the addition of qualitative ancillary data on parcel-based image classification[J].International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2009,38:1-4.

[44] Saha A K,Arora M K,Csaplovics E,et al.Land cover classification using IRS LISS III image and DEM in a rugged terrain:A case study in Himalayas[J].Geocarto International,2005,20(2):33-40.

[45] Walter V.Automatic change detection in GIS databases based on classification of multispectral data[J].International Archives of Photogrammetry and Remote Sensing,2000,33:1138-1145.

[46] Heipke C,Straub B.Towards the automatic GIS update of vegetation areas from satellite imagery using digital landscape model as prior information[J].Automatic Extraction of GIS Objects from Digital Imagery,1999,32:167-174.

[47] Peng P,Gao W,Liu X G,et al.An improved strategy for object-oriented multi-scale remote sensing image segmentation[C]//Proceedings of the1st International Conference on Information Science and Engineering.Nanjing:IEEE,2009,1149-1152.

[48] 骆剑承,王钦敏,周成虎,等.基于自适应共振模型的遥感影像分类方法研究[J].测绘学报,2002,31(2):145-150. Luo J C,Wang Q M,Zhou C H,et al.Adaptive resonance theory for classification of remotely sensed image[J].Acta Geodaetica et Cartographic Sinica,2002,31(2):145-150.

[49] 薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. Bo H,Ma F L,Jiao L C.Research on computation of GLCM of image texture[J].Acta Electronica Sinica,2006,34(1):155-158.

[1] 冯力力,江利明,柳林,孙亚飞. 新疆克拉牙依拉克冰川变化(1973—2016)主被动遥感监测分析[J]. 国土资源遥感, 2020, 32(2): 162-169.
[2] 石海岗,梁春利,张建永,张春雷,程旭. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2): 196-203.
[3] 刘晰,郝利娜,杨显华,黄洁,张志,杨武年. 矿山遥感监测指标快速统计方法研究与实现[J]. 国土资源遥感, 2020, 32(2): 259-265.
[4] 康晋洁,戚浩平,杨清华,陈华. 道路通行障碍物遥感检测与通过性评价[J]. 国土资源遥感, 2020, 32(2): 94-102.
[5] 汪洁,殷亚秋,于航,蒋存浩,万语. 基于RS和GIS的浙江省矿山地质环境遥感监测[J]. 国土资源遥感, 2020, 32(1): 232-236.
[6] 赵玉灵,杨金中,殷亚秋,赵航,何金宝,张汉. 海南岛东部滨海锆钛砂矿开发状况遥感监测与生态恢复治理对策研究[J]. 国土资源遥感, 2019, 31(4): 143-150.
[7] 吴海平,黄世存. 基于深度学习的新增建设用地信息提取试验研究——全国土地利用遥感监测工程创新探索[J]. 国土资源遥感, 2019, 31(4): 159-166.
[8] 陈震,张耘实,章远钰,桑玲玲. 高标准农田建后遥感监测方法[J]. 国土资源遥感, 2019, 31(2): 125-130.
[9] 李微,刘伟男,贾越平,刘洪洋,汤勇. 基于面向对象法艾比湖卤虫信息提取[J]. 国土资源遥感, 2018, 30(4): 176-181.
[10] 杨显华,黄洁,田立,彭孛,肖礼晓,宋新龙. 矿山遥感监测在采空区稳定性分析中的应用[J]. 国土资源遥感, 2018, 30(3): 143-150.
[11] 张春桂, 林炳青. 基于FY-2E卫星数据的福建沿海海雾遥感监测[J]. 国土资源遥感, 2018, 30(1): 7-7.
[12] 刁娇娇, 龚鑫烨, 李明诗. 利用综合变化检测方法进行土地覆盖变化制图[J]. 国土资源遥感, 2018, 30(1): 157-165.
[13] 魏本赞, 付丽华, 范芳, 张策, 揭文辉, 董双发. 1998—2015年新疆玛纳斯河流域湿地动态变化遥感监测[J]. 国土资源遥感, 2017, 29(s1): 90-94.
[14] 张策, 揭文辉, 付丽华, 魏本赞. 新疆新源县滑坡灾害遥感影像特征及分布规律[J]. 国土资源遥感, 2017, 29(s1): 81-84.
[15] 薛庆, 吴蔚, 李名松, 董双发, 章新益, 石海港. 高分一号数据在矿山遥感监测中的应用[J]. 国土资源遥感, 2017, 29(s1): 67-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发