Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (2): 28-33    DOI: 10.6046/gtzyyg.2016.02.05
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于分层特征描述的舰船目标鉴别
程红1, 刘思彤1,2, 孙文邦1, 杨帅1
1. 空军航空大学, 长春 130022;
2. 空军西安飞行学院, 西安 710306
Ship target discrimination based on hierarchical feature description
CHENG Hong1, LIU Sitong1,2, SUN Wenbang1, YANG Shuai1
1. Aviation University of Air Force, Changchun 130022, China;
2. Xi'an Flight Academy of Air Force, Xi'an 710306, China
全文: PDF(2579 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对当前一些目标鉴别方法无法兼顾目标的可分性和方法的有效性,同时又能减少计算的复杂度等要求,提出了一种基于分层特征描述的鉴别方法。首先,提取目标的简单形状或几何特征,利用加权投票法初步筛选并去除大量易识别的虚警; 然后对筛选的候选目标提取更为复杂的鉴别特征,利用特征分离法选择最优特征组合,并采用支持向量机方法进行二次鉴别,进一步去除虚警,得到真实目标。实验结果表明,该方法对目标的整体检测效果较好,具有较高的可区分性和可鉴别性; 能有效减少计算的复杂度,同时又能在一定程度上减少外界因素的影响,有效地去除虚警、保留目标,其耗时仅为常用方法的1/3。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭啟倩
李盛乐
刘珠妹
关键词 高分辨率遥感断裂矢量化断层产状测量Google Earth Plug-in    
Abstract

In view of the problem that current methods cannot reach a good balance between capability of discrimination, utility and computational complexity, the authors have proposed in this paper an algorithm based on hierarchical feature description. Firstly, simple shape or geometrical features are extracted to get rid of large numbers of false-alarm targets based on weighted voting. Secondly, complex discrimination features are selected to form the optimal feature set by feature separation. And then the feature set is used to support vector machine to get the real ship target. Experimental results show that the proposed algorithm in this paper, which extracts hierarchical features to certain regions identified, can effectively eliminate false alarms, reduce the amount of computation, and improve accuracy and efficiency of discrimination, and can also reduce the influence of external factors, remove false alarm and reserve the targets effectively, with time spending being only 1/3 of the common method.

Key wordshigh resolution remote sensing    fault    vectorization    fault attitude measurement    Google Earth Plug-in
收稿日期: 2014-12-24      出版日期: 2016-04-14
ZTFLH:  TP751  
基金资助:

全军军事类研究生课题(编号: 2013JY514)资助。

通讯作者: 刘思彤(1989-),女,硕士,助教,主要研究数字图像处理与应用。Email: liusitong1114@163.com。     E-mail: liusitong1114@163.com
作者简介: 程红(1969-),女,博士,教授,硕士研究生导师。主要从事遥感图像信息处理。
引用本文:   
程红, 刘思彤, 孙文邦, 杨帅. 基于分层特征描述的舰船目标鉴别[J]. 国土资源遥感, 2016, 28(2): 28-33.
CHENG Hong, LIU Sitong, SUN Wenbang, YANG Shuai. Ship target discrimination based on hierarchical feature description. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 28-33.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.02.05      或      http://www.gtzyyg.com/CN/Y2016/V28/I2/28

[1] Corbane C,Najman L,Pecoul E et al.A complete processing chain for ship detection using optical satellite imagery[J].International Journal of Remote Sensing,2010,31(22):5837-5854.

[2] Bi F K,Liu F,Gao L N.A hierarchical salient-region based algorithm for ship detection in remote sensing images[J].Lecture Notes in Electrical Engineering,2010,67:729-738.

[3] Li W W.Detection of Ship in Optical Remote Sensing Image of Median-low Resolution[D].Changsha:National University of Defense Technology,2008:19-21.

[4] Lu C Y,Zou H X,Sun H,et al.Combing rough set and RBF neural network for large-scale ship recognition in optical satellite images[C]//Proceedings of the 35th International Symposium on Remote Sensing of Environment(ISRSE35).IOP Conference Series:Earth and Environmental Science,SCI,2014,17(1).

[5] 李禹,王世晞,计科峰,等.一种新的高分辨率SAR图像目标自动鉴别方法[J].国防科技大学学报,2007,29(3):81-84. Li Y,Wang S X,Ji K F,et al.A new method of automatic target discrimination in high-resolution SAR image[J].Journal of National University of Defense Technology,2007,29(3):81-84.

[6] Gonzalez R C,Woods R E,Eddins S L.Digital Image Processing Using MATLAB[M].Translated by Ruan Q Q.Beijing:Publishing House of Electronics Industry,2005:315-319.

[7] 刘凯.基于分形几何理论的虹膜识别算法研究[D].济南:山东大学,2011:13-20. Liu K.The Research of Iris Recognition Algorithms Based on Fractal Geometry[D].Ji'nan:Shandong University,2011:13-20.

[8] 许军毅.光学卫星遥感图像舰船目标检测技术研究[D].长沙:国防科技大学,2011:73-80. Xu J Y.The Study of Ship Target Detection in Optical Satellite Remote Sensing Image[D].Changsha:National University of Defense Technology,2011:73-80.

[9] Delphine C M.Ship detection with spaceborne multichannel SAR/GMTI radars[C]//Proceedings of 9th European Conference on Synthetic Aperture Radar.Piscataway,NJ,USA;IEEE,2012:400-403.

[10] Gao G.An improved scheme for target discrimination in high-resolution SAR images[J].IEEE Transaction on Geosciences and Remote Sensing,2011,49(1):277-294.

[11] Dardas N H,Georganas N D.Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques[J].IEEE Transactions on Instrumentation and Measurement,2011,60(11):3592-3607.

[1] 康晋洁,戚浩平,杨清华,陈华. 道路通行障碍物遥感检测与通过性评价[J]. 国土资源遥感, 2020, 32(2): 94-102.
[2] 赵卫东,郑勇,章浩南,姜琼,卫佳佳. 基于多源数据的郯庐断裂带安徽段遥感解译及其空间分布特征[J]. 国土资源遥感, 2019, 31(4): 79-87.
[3] 李想,杨灿坤,周春平,李小娟,张可. 高分辨率光学卫星图像目标运动信息提取研究综述[J]. 国土资源遥感, 2019, 31(3): 1-9.
[4] 谢奇芳,姚国清,张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2): 38-43.
[5] 谢小平,白毛伟,陈芝聪,柳伟波,席书娜. 龙门山断裂带北东段活动断裂的遥感影像解译及构造活动性分析[J]. 国土资源遥感, 2019, 31(1): 237-246.
[6] 夏玲燕,林畅松,李筱,胡悦. 基于遥感和航磁多源数据研究莲花山深大断裂在广东及相邻海域的延伸[J]. 国土资源遥感, 2019, 31(1): 247-254.
[7] 齐信, 刘广宁, 黄长生. 麻城—团风断裂带分段活动特征遥感调查[J]. 国土资源遥感, 2018, 30(1): 121-127.
[8] 范玉海, 王辉, 杨兴科, 彭齐鸣, 秦绪文, 杨金中, 张少鹏, 谭富荣. 基于高分辨率遥感数据的稀有金属矿化带勘查[J]. 国土资源遥感, 2018, 30(1): 128-134.
[9] 岳梦雪, 秦昆, 张恩兵, 张晔, 曾诚. 基于数据场和密度聚类的高分辨率影像居民区提取[J]. 国土资源遥感, 2017, 29(3): 92-97.
[10] 李亮, 梁彬, 薛鹏, 应国伟. 矢量图约束的遥感影像分割算法[J]. 国土资源遥感, 2016, 28(3): 80-85.
[11] 邓曾, 李丹, 柯樱海, 吴燕晨, 李小娟, 宫辉力. 基于改进SVM算法的高分辨率遥感影像分类[J]. 国土资源遥感, 2016, 28(3): 12-18.
[12] 蔡红玥, 姚国清. 高分辨率遥感图像道路交叉口自动提取[J]. 国土资源遥感, 2016, 28(1): 63-71.
[13] 肖春蕾, 郭兆成, 郑雄伟, 刘圣伟, 尚博譞. 机载LiDAR技术在地质调查领域中的几个典型应用[J]. 国土资源遥感, 2016, 28(1): 136-143.
[14] 温礼, 吴海平, 姜方方, 苏伟, 朱德海, 张超. 基于高分辨率遥感影像的围填海图斑遥感监测分类体系和解译标志的建立[J]. 国土资源遥感, 2016, 28(1): 172-177.
[15] 郭啟倩, 李盛乐, 刘珠妹. 断层高分辨率遥感在线解译及产状测量平台[J]. 国土资源遥感, 2016, 28(1): 190-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发