Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (1): 72-77    DOI: 10.6046/gtzyyg.2018.01.10
  本期目录 | 过刊浏览 | 高级检索 |
基于主动深度学习的极化SAR图像分类
徐佳1,4(), 袁春琦1,2, 程圆娥3, 曾晨雨5, 许康4
1. 河海大学地球科学与工程学院,南京 211100
2.北方信息控制研究院集团有限公司,南京 211153
3.江苏省测绘研究所,南京 210013
4.江苏省测绘工程院,南京 210013
5.中南大学软件学院,长沙 410075
Active deep learning based polarimetric SAR image classification
Jia XU1,4(), Chunqi YUAN1,2, Yuane CHENG3, chenyu ZENG5, Kang XU4
1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
2. North Information Control Group, Nanjing 211153, China
3. Jiangsu Province Surveying & Mapping Research Institute, Nanjing 210013, China;
4. Jiangsu Province Surveying & Mapping Engineering Institute, Nanjing 210013, China;
5. School of Software Central South University, Changsha 410075, China
全文: PDF(2253 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对极化SAR图像在监督分类时存在人工标注样本费时费力以及浅层结构学习算法的表达能力有限等问题,提出一种基于主动深度学习的极化SAR图像分类方法。首先,对测量数据进行多种极化特征提取,以便完整地描述图像信息; 在此基础上,通过自动编码器对大量无标记样本进行非监督学习,提取更具可分性和不变性的深层特征; 然后,利用少量标记样本训练分类器,并与自动编码器连接,以监督学习的方式微调整个网络; 最后,通过主动学习,选择对当前分类器最有价值的样本(分类模糊度最大的样本)进行人工标记,并加入到训练样本中,重新训练分类器和微调网络。对RADARSAT-2和EMISAR极化SAR影像进行不同分类的实验结果表明,该方法能在更少人工标记的样本下获得较高的分类精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐佳
袁春琦
程圆娥
曾晨雨
许康
关键词 极化SAR极化目标分解图像分类主动学习深度学习    
Abstract

Supervised classification methods usually require adequate labeled samples which are difficult and time-consuming to obtain for polarimetric SAR images, while the expression capability of the shallow structure learning algorithm is limited. A novel supervised classification method for polarimetric SAR imagery based on active deep learning is proposed in this paper. Firstly, the features are extracted from an original image by multiple polarization target decomposition methods for fully describing the data,and the features which are separable and invariable can be extracted with unsupervised learning by auto-encoder. Then, the initial classifier is trained and fine-tune the whole model with a small number of labeled samples. Finally, the most valuable samples (the largest ambiguity samples for classifier)are selected to label by active learning. Experimental results in comparison with conventional methods for polarimetric SAR data sets of RADARSAT-2 and EMISAR show that the proposed method can achieve higher classification accuracy with a small number of labeled samples.

Key wordspolarimetric SAR    target decomposition    image classification    active learning    deep learning
收稿日期: 2016-06-30      出版日期: 2018-02-08
:  TP751.1  
基金资助:国家自然科学基金项目“基于视觉注意机制的SAR图像小目标检测方法研究”(编号: 41301449)、江苏省测绘地理信息科研项目“基于多源遥感数据的滨海湿地精细分类与变化监测”(编号: JSCHKY201501)共同资助
作者简介:

第一作者: 徐 佳(1983-),女,博士,副教授,硕士生导师,主要从事多源遥感信息融合与应用方面的研究。Email:hhuxj@hhu.edu.cn

引用本文:   
徐佳, 袁春琦, 程圆娥, 曾晨雨, 许康. 基于主动深度学习的极化SAR图像分类[J]. 国土资源遥感, 2018, 30(1): 72-77.
Jia XU, Chunqi YUAN, Yuane CHENG, chenyu ZENG, Kang XU. Active deep learning based polarimetric SAR image classification. Remote Sensing for Land & Resources, 2018, 30(1): 72-77.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.01.10      或      https://www.gtzyyg.com/CN/Y2018/V30/I1/72
分解方法 极化参数 维数
Pauli Pauli_a,Pauli_b,Pauli_c 3
Krogager Krogager_KS,Krogager_KD,Krogager_KH 3
Huynen Huynen_T11,Huynen_T22,Huynen_T33 3
Bames Bames_T11,Bames_T22,Bames_T33 3
Yamaguchi Yamaguchi_Vol ,Yamaguchi_Odd
Yamaguchi_Dbl ,Yamaguchi_Hlx
4
Cloude Cloude_T11,Cloude_T22,Cloude_T33 3
Freeman Freeman_Vol,Freeman_Odd,Freeman_Dbl 3
Holm Holm_T11,Holm_T22,Holm_T33 3
Tab.1  极化分解特征
Fig.1  基于自动编码器与softmax的分类示意图
Fig.2  基于主动深度学习的极化SAR图像分类流程图
Fig.3  实验数据
每类样本数目 RADARSAT-2 EMISAR
SVM Deep SVM Deep
5 66.58 69.93 78.29 82.14
10 72.31 75.39 81.23 86.23
15 78.20 80.27 84.48 89.39
20 80.93 81.15 87.30 90.10
25 81.19 82.23 88.64 90.61
30 81.94 82.90 89.72 90.94
35 82.18 83.22 90.46 91.82
40 82.34 83.33 90.95 91.90
Tab.2  随机选取不同数目样本的SVM和Deep分类精度
Fig.4  基于主动学习的SVM和Deep分类精度
Fig.5  RADARSAT-2数据不同方法分类结果图
Fig.6  EMISAR数据不同方法分类结果图
[1] Qi Z X,Yeh A G O,Li X, et al.Monthly short-term detection of land development using RADARSAT-2 polarimetric SAR imagery[J].Remote Sensing of Environment,2015,164:179-196.
[2] Yu P,Qin A K,Clausi D A.Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(4):1302-1317.
[3] 陈军,杜培军,谭琨.一种改进的全极化SAR图像MCSM-Wishart非监督分类方法[J].国土资源遥感,2015,27(2):15-21.doi:10.6046/gtzyyg.2015.02.03.
Chen J,Du P J,Tan K.An improved unsupervised classification scheme for polarimetric SAR image with MCSM-Wishart[J].Remote Sensing for Land and Resources,2015,27(2):15-21.doi:10.6046/gtzyyg.2015.02.03.
[4] Samat A,Du P J,Baig M H A,et al.Ensemble learning with multiple classifiers and polarimetric features for polarized SAR image classification[J].Photogrammetric Engineering & Remote Sensing,2014,80(3):239-251,doi:10.14358/PERS.80.3.239.
[5] Zhang Y H,Zhang J X,Zhang X F,et al.Land cover classification from polarimetric SAR data based on image segmentation and decision trees[J].Canadian Journal of Remote Sensing,2015,41(1):40-50.
[6] Uhlmann S,Kiranyaz S,Gabbouj M.Semi-supervised learning for ill-posed polarimetric SAR classification[J].Remote Sensing,2014,6(6):4801-4830.
[7] Liu H Y,Wang Y K,Yang S Y,et al.Large polarimetric SAR data semi-supervised classification with spatial-anchor graph[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(4):1439-1458.
[8] 陈荣,曹永锋,孙洪.基于主动学习和半监督学习的多类图像分类[J].自动化学报,2011,37(8):954-962.
Chen R,Cao Y F,Sun H.Multi-class image classification with active learning and semi-supervised learning[J].Acta Automatica Sinica,2011,37(8):954-962.
[9] Samat A,Gamba P,Du P J,et al.Active extreme learning machines for quad-polarimetric SAR imagery classification[J].International Journal of Applied Earth Observation and Geoinformation,2015,35:305-319.
[10] Joshi A J,Porikli F,Papanikolopoulos N.Multi-class active learning for image classification[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.Miami,FL:IEEE,2009:2372-2379.
[11] Bengio Y.Learning deep architectures for AI[J].Foundations and Trends® in Machine Learning,2009,2(1):1-127.
[12] Cloude S R,Pottier E.A review of target decomposition theorems in radar polarimetry[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(2):498-518.
[13] Rumelhart D E,Hinton G E,Williams R J.Learning representations by back-propagating errors[J].Nature,1986,323(6088):533-536.
[14] Chen Y S,Lin Z H,Zhao X,et al.Deep learning-based classification of hyperspectral data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2094-2107.
[1] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[2] 李渊, 毋琳, 戚雯雯, 郭拯危, 李宁. 基于改进OGMRF-RC模型的SAR图像分类方法[J]. 自然资源遥感, 2021, 33(4): 98-104.
[3] 郭晓征, 姚云军, 贾坤, 张晓通, 赵祥. 基于U-Net深度学习方法火星沙丘提取研究[J]. 自然资源遥感, 2021, 33(4): 130-135.
[4] 白俊龙, 王章琼, 闫海涛. K-means聚类引导的无人机遥感图像阈值分类方法[J]. 自然资源遥感, 2021, 33(3): 114-120.
[5] 冯东东, 张志华, 石浩月. 基于多元数据的省会城市城中村精细提取[J]. 自然资源遥感, 2021, 33(3): 272-278.
[6] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[7] 武宇, 张俊, 李屹旭, 黄康钰. 基于改进U-Net的建筑物集群识别研究[J]. 国土资源遥感, 2021, 33(2): 48-54.
[8] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[9] 安健健, 孟庆岩, 胡蝶, 胡新礼, 杨健, 杨天梁. 基于Faster R-CNN的火电厂冷却塔检测及工作状态判定[J]. 国土资源遥感, 2021, 33(2): 93-99.
[10] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[11] 裴婵, 廖铁军. 面向遥感目标检测的多尺度架构搜索方法[J]. 国土资源遥感, 2020, 32(4): 53-60.
[12] 刘钊, 廖斐凡, 赵桐. 基于PSPNet的遥感影像城市建成区提取及其优化方法[J]. 国土资源遥感, 2020, 32(4): 84-89.
[13] 郑智腾, 范海生, 王洁, 吴艳兰, 王彪, 黄腾杰. 改进型双支网络模型的遥感海水网箱养殖区智能提取方法[J]. 国土资源遥感, 2020, 32(4): 120-129.
[14] 杜方洲, 石玉立, 盛夏. 基于深度学习的TRMM降水产品降尺度研究——以中国东北地区为例[J]. 国土资源遥感, 2020, 32(4): 145-153.
[15] 蔡之灵, 翁谦, 叶少珍, 简彩仁. 基于Inception-V3模型的高分遥感影像场景分类[J]. 国土资源遥感, 2020, 32(3): 80-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发