Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (1): 157-165    DOI: 10.6046/gtzyyg.2018.01.22
  本期目录 | 过刊浏览 | 高级检索 |
利用综合变化检测方法进行土地覆盖变化制图
刁娇娇1,2(), 龚鑫烨1,2, 李明诗1,2()
1.南京林业大学林学院,南京 210037
2.南京林业大学南方林业协同创新中心,南京 210037
A comprehensive change detection method for updating land cover data base
Jiaojiao DIAO1,2(), Xinye GONG1,2, Mingshi LI1,2()
1.College of Forestry, Nanjing Forestry University, Nanjing 210037, China
2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
全文: PDF(2074 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

在全球环境变化研究中,对土地利用和土地覆盖的描述、量化和监测尤为重要。为此,基于综合变化检测算法(comprehensive change detection method, CCDM),计算2011—2016年Landsat影像(P033/R033)的土地类型变化。CCDM整合了2种基于光谱的变化检测方法, 即多指标综合变化分析(multi-index integrated change analysis, MIICA)模型和分区(Zone)变化检测模型。通过计算变化向量(change vector, CV)、最大相对变化向量(relative change vector maximum, RCVMAX)、差分归一化燃烧率(differenced normalized burn ratio, dNBR)和差分归一化植被指数(differenced normalized difference vegetation index,dNDVI)等4个光谱指标和时间(t)提取2期Landsat影像的变化。此外,根据前期和当前土地覆盖的变化趋势和MIICA与Zone结果的变化,对CCDM结果的准确性进行了评价。评价结果表明: 非变化类的准确率为96%,变化类的准确率为40%,总体精度为68%。CCDM方法简单、容易实现、应用广泛,能捕捉不同景观中各种自然和人为干扰引起的潜在土地覆盖变化,可为国家土地覆盖更新和土地变化检测提供技术支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刁娇娇
龚鑫烨
李明诗
关键词 综合变化检测算法(CCDM)土地覆盖变化遥感监测精度评价    
Abstract

Describing, quantifying and monitoring land use/land cover change play an important role in the global and environmental change investigation. Based on a comprehensive change detection method (CCDM), the authors mapped the land cover changes in the period between 2011 and 2016 over the Landsat image (Path33/Row33). CCDM integrates some spectral change based detection algorithms, which encompasses the multi-index integrated change analysis (MIICA) model and the Zone model, with an emphasis or core on MIICA. By calculating four spectral indices including change vector (CV), relative change vector maximum (RCVMAX), differenced normalized burn ratio (dNBR) and differenced normalized difference vegetation index (dNDVI), the land cover changes were extracted from the bi-temporal imagery. According to the previous and the current land cover change trends, coupled with the changes in results from MIICA and Zone models, the accuracies of change detection results by CCDM were evaluated. The results show that there is an accuracy of 96% for the category of no-change, and 40% for change category, with an overall accuracy of 68%. The CCDM is a simple, easily realized and widely used model to capture the potential land cover changes caused by the diverse natural and anthropengic disturbances in different landscapes.

Key wordscomprehensive change detection method(CCDM)    land cover change    remote sensing detection    accuracy assessment
收稿日期: 2016-08-22      出版日期: 2018-02-08
:  TP79  
基金资助:国家林业局“948”项目“森林干扰及恢复历史重构遥感分析模型引进”(编号: 2014-4-25)、国家自然科学基金项目“基于干扰和恢复历史的南方人工林碳核算改进方法研究”(编号: 31670552)和江苏省研究生培养创新工程项目“基于VCT干扰产品的碳核算方法研究”(编号: KYLX16_1359)共同资助
作者简介:

第一作者: 刁娇娇(1989-),女,博士研究生,主要研究方向为遥感与GIS在生态学方面的应用。Email:diaojiaojiao@163.com

引用本文:   
刁娇娇, 龚鑫烨, 李明诗. 利用综合变化检测方法进行土地覆盖变化制图[J]. 国土资源遥感, 2018, 30(1): 157-165.
Jiaojiao DIAO, Xinye GONG, Mingshi LI. A comprehensive change detection method for updating land cover data base. Remote Sensing for Land & Resources, 2018, 30(1): 157-165.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.01.22      或      https://www.gtzyyg.com/CN/Y2018/V30/I1/157
Fig.1  2011年Landsat影像NLCD土地覆盖分类及研究区位置
编号 遥感数据获取日期 传感器类型 云量/%
2010-149 20100529 Landsat5 TM 2
2011-296 20111023 Landsat5 TM 0
2015-307 20151103 Landsat8 OLI 0
2016-070 20160310 Landsat8 OLI 1
Tab.1  Landsat遥感数据详细信息
Fig.2  CCDM技术流程图
Fig.3  MIICA模型流程图
前期影像阈值 后期影像阈值
BI BD BI BD
CV>2 000
RCVMAX>200
dNDVI<mean-0.5 std
dNBR<mean-0.5 std
CV>2 000
RCVMAX>200
dNDVI>mean+0.5 std
dNBR>mean+0.5 std
CV>2 000
RCVMAX>0
dNDVI<mean-0.5 std
dNBR<mean-0.5 std
CV>2 000
RCVMAX>0
dNDVI>mean+0.5 std
dNBR>mean+0.5 std
Tab.2  MIICA阈值确定规则
Fig.4  Zone模型流程
Fig.5  整合MIICA和Zone的土地覆盖变化制图流程
Fig.6-1  区域1的变化检测过程
Fig.6-2  区域1的变化检测过程
Fig.7-1  区域2的变化检测过程
Fig.7-2  区域2的变化检测过程
NLCD 2011土地类型 样本单元数 变化类(2011―2016年) 未变化类(2011―2016年)
样本单元数 未变化样本单元数 样本单元数 变化样本单元数
城市(21,22,23,24) 5 0 0 5 0
森林(41,42,43) 22 11 6 11 3
灌木(52) 13 7 5 6 0
草地(71) 56 10 4 46 0
农田(81,82) 2 2 2 0 0
湿地(90,95) 2 2 2 0 0
总和 100 32 19 68 3
精度/% 40 96
总体正确率/% 68
Tab.3  Landsat P033/R033影像100个验证样本的精度评价结果
[1] 陈广生,田汉勤.土地利用/覆盖变化对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2):189-204.
Chen G S,Tian H Q.Land use/cover change effects on carbon cycling in terrestrial ecosystems[J].Journal of Plant Ecology,2007,31(2):189-204.
[2] Coppin P,Jonckheere I,Nackaerts K,et al.Review Article Digital change detection methods in ecosystem monitoring:A review[J].International Journal of Remote Sensing,2004,25(9):1565-1596.
[3] Homer C,Dewitz J,Fry J,et al.Completion of the 2001 national land cover database for the counterminous United States[J].Photogrammetric Engineering and Remote Sensing,2007,73(4):337-341.
[4] Xian G,Crane M.Assessments of urban growth in the Tampa Bay watershed using remote sensing data[J].Remote Sensing of Environment,2005,97(2):203-215.
[5] Pouliot D,Latifovic R,Olthof I.Trends in vegetation NDVI from 1 km AVHRR data over Canada for the period 1985—2006[J].International Journal of Remote Sensing,2009,30(1):149-168.
[6] Zhan X,Defries R,Townshend J R G,et al.The 250 m global land cover change product from the moderate resolution imaging spectroradiometer of NASA’s earth observing system[J].International Journal of Remote Sensing,2000,21(6/7):1433-1460.
[7] 黄维,黄进良,王立辉,等.基于PCA的变化向量分析法遥感影像变化检测[J].国土资源遥感,2016,28(1):22-27.doi:10.6046/gtzyyg.2016.01.04.
Huang W,Huang J L,Wang L H,et al.Remote sensing image change detection based on change vector analysis of PCA component[J].Remote Sensing for Land and Resources,2016,28(1):22-27.doi:10.6046/gtzyyg.2016.01.04.
[8] 常潇,肖鹏峰,冯学智,等.近30年长江中下游平原典型区耕地覆盖变化[J].国土资源遥感,2014,26(2):170-176.doi:10.6046/gtzyyg.2014.02.27.
Chang X,Xiao P F,Feng X Z,et al.Change of cropland in typical area of Middle-Lower Yangtze Plain over the past 30 years[J].Remote Sensing for Land and Resources,2014,26(2):170-176.doi:10.6046/gtzyyg.2014.02.27.
[9] Huang C Q,Song K,Kim S,et al.Use of a dark object concept and support vector machines to automate forest cover change analysis[J].Remote Sensing of Environment,2008,112(3):970-985.
[10] Kennedy R E,Yang Z Q,Cohen W B.Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr-Temporal segmentation algorithms[J].Remote Sensing of Environment,2010,114(12):2897-2910.
[11] Li M S,Huang C Q,Shen W J,et al.Characterizing long-term forest disturbance history and its drivers in the Ning-Zhen Mountains,Jiangsu Province of eastern China using yearly Landsat observations(1987-2011)[J].Journal of Forestry Research,2016,27(6)1329-1341.
[12] Latifovic R,Pouliot D.Multitemporal land cover mapping for Canada: methodology and products[J].Canadian Journal of Remote Sensing,2005,31(5):347-363.
[13] Jin S M,Yang L M,Danielson P,et al.A comprehensive change detection method for updating the National Land Cover Database to circa 2011[J].Remote Sensing of Environment,2013,132:159-175.
[14] Weatherbase.Denver,Colorado Travel Weather Averages[EB/OL].[2013-07-10]..
[15] Key C H,Benson N C.Measuring and remote sensing of burn severity[C]//Neuenschwander L F,Ryan K C,Gollberg G E.Proceedings of Joint Fire Science Conference and Workshop:Crossing the Millennium:Integrating Spatial Technologies and Ecological Principles for A New Age in Fire Management.Boise,Idaho:University of Idaho and the International Association of Wildland Fire,1999:284.
[16] 魏新彩,王新生,刘海,等.HJ卫星图像水稻种植面积的识别分析[J].地球信息科学学报,2012,14(3):382-388.
Wei X C,Wang X S,Liu H,et al.Extraction of paddy rice coverage based on the HJ satellite data[J].Journal of Geo-Information Science,2012,14(3):382-388.
[17] 谭柳霞,曾永年,郑忠.林火烈度遥感评估指数适应性分析[J].国土资源遥感,2016,28(2):84-90.doi:10.6046/gtzyyg.2016.02.14.
Tan L X,Zeng Y N,Zheng Z.An adaptability analysis of remote sensing indices in evaluating fire severity[J].Remote Sensing for Land and Resources,2016,28(2):84-90.doi:10.6046/gtzyyg.2016.02.14.
[18] López García M J,Caselles V.Mapping burns and natural reforestation using Thematic Mapper data[J].Geocarto International,1991,6(1):31-37.
[19] 吴俊,孟庆岩,占玉林,等.一种基于移动窗口的城市绿度遥感度量方法[J].地球信息科学学报,2016,18(4):544-552.
Wu J,Meng Q Y,Zhan Y L,et al.A measure of urban green index in urban areas based on moving window method[J].Journal of Geo-information Science,2016,18(4):544-552.
[1] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[2] 陈栋, 姚维岭. 基于ArcPy与定制ArcToolbox的矿山新增图斑自动编号及方法改进[J]. 国土资源遥感, 2021, 33(2): 262-269.
[3] 陈超, 陈慧欣, 陈东, 张自力, 张旭锋, 庄悦, 褚衍丽, 陈建裕, 郑红. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 国土资源遥感, 2021, 33(2): 141-152.
[4] 范嘉智, 罗宇, 谭诗琪, 马雯, 张弘豪, 刘富来. 基于FY-3C/MWRI的湖南省地表温度遥感反演评价[J]. 国土资源遥感, 2021, 33(1): 249-255.
[5] 汪洁, 刘小杨, 杨金中, 周英杰, 安娜, 王志晖. 基于国产高空间分辨率卫星数据的浙江省矿山环境恢复治理典型模式分析[J]. 国土资源遥感, 2020, 32(3): 216-221.
[6] 刁明光, 刘文静, 李静, 刘芳, 王彦佐. 矿山遥感监测矢量成果数据动态变化检测方法[J]. 国土资源遥感, 2020, 32(3): 240-246.
[7] 冯力力, 江利明, 柳林, 孙亚飞. 新疆克拉牙依拉克冰川变化(1973—2016)主被动遥感监测分析[J]. 国土资源遥感, 2020, 32(2): 162-169.
[8] 石海岗, 梁春利, 张建永, 张春雷, 程旭. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2): 196-203.
[9] 刘晰, 郝利娜, 杨显华, 黄洁, 张志, 杨武年. 矿山遥感监测指标快速统计方法研究与实现[J]. 国土资源遥感, 2020, 32(2): 259-265.
[10] 汪洁, 殷亚秋, 于航, 蒋存浩, 万语. 基于RS和GIS的浙江省矿山地质环境遥感监测[J]. 国土资源遥感, 2020, 32(1): 232-236.
[11] 赵玉灵, 杨金中, 殷亚秋, 赵航, 何金宝, 张汉. 海南岛东部滨海锆钛砂矿开发状况遥感监测与生态恢复治理对策研究[J]. 国土资源遥感, 2019, 31(4): 143-150.
[12] 吴海平, 黄世存. 基于深度学习的新增建设用地信息提取试验研究——全国土地利用遥感监测工程创新探索[J]. 国土资源遥感, 2019, 31(4): 159-166.
[13] 陈震, 张耘实, 章远钰, 桑玲玲. 高标准农田建后遥感监测方法[J]. 国土资源遥感, 2019, 31(2): 125-130.
[14] 宋宏利, 张晓楠. 国家尺度异源土地覆被遥感产品精度评价[J]. 国土资源遥感, 2018, 30(3): 26-32.
[15] 于冰, 王继燕, 苏勇, 肖东升, 刘福臻. 基于像元转换的土地覆盖变化监测方法——以北京市区县为例[J]. 国土资源遥感, 2018, 30(3): 60-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发