Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (1): 33-41    DOI: 10.6046/gtzyyg.2019.01.05
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于波段选择与学习字典的高光谱图像异常探测
侯增福1, 刘镕源2, 闫柏琨2, 谭琨1()
1.中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室,徐州 221116
2.中国自然资源航空物探遥感中心,北京 100083
Hyperspectral imagery anomaly detection based on band selection and learning dictionary
Zengfu HOU1, Rongyuan LIU2, Bokun YAN2, Kun TAN1()
1.Key Laboratory for Land Environment and Disaster Monitoring of NASG,China University of Mining and Technology, Xuzhou 221116,China
2.China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
全文: PDF(4868 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对高光谱影像数据中存在大量冗余,传统异常探测算法应用高光谱所有波段进行探测计算量巨大的问题,提出一种基于波段相似性线性预测与学习字典的异常探测算法。该算法首先通过对波段的相似性进行线性预测,找到最不相似的波段子集; 然后,利用学习字典算法获得能够表征图像背景信息的背景字典,并通过低秩分解的算法将影像分解为低秩矩阵与稀疏矩阵; 最后,使用经典RXD(Reed-X detector)探测算法对稀疏影像进行异常探测。实验结果表明,该算法可以在减少计算代价、保持波段原始信息不被破坏的同时,能够较好地实现了高光谱影像的异常探测。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯增福
刘镕源
闫柏琨
谭琨
关键词 高光谱波段相似性线性预测学习字典异常探测低秩分解稀疏    
Abstract

With the large quantities of redundant information in the hyperspectral imagery, the traditional anomaly detection algorithm using the overall hyperspectral spectrum should consume a larger amount of computing time. Based on the linear prediction and learning dictionary, the authors put forward a novel algorithm. Compared with other low rank representation methods, the linear prediction method with the similarity of the band is utilized to find the least similar band subsets, and then the learning dictionary is implemented to obtain the learning dictionary which can represent the background information of the imagery. In addition, the imagery is divided into low rank matrix and sparse matrix via the low rank and decomposition. Finally, the traditional RXD (Reed-X detector) detection algorithm is utilized to detect the sparse image anomaly. Compared with other methods, the proposed method performs better with lower computational cost. Experimental results demonstrate that the selection of some bands including original information can achieve a good performance without corrupting the original information. It is a fine technique to apply to the hyperspectral imagery anomaly detection.

Key wordshyperspectral    band similarity    linear prediction    learning dictionary    anomaly detection    low rank decomposition    sparse
收稿日期: 2017-09-25      出版日期: 2019-03-15
:  TP79  
基金资助:中国地质调查局地质调查项目“天山—北山重要成矿区带遥感调查”(DD20160068);徐州市科技基金项目共同资助(KC16SS092)
通讯作者: 谭琨
作者简介: 侯增福(1991-),男,硕士研究生,主要从事高光谱目标检测和异常探测方面的研究。Email: zephyrhou@126.com。
引用本文:   
侯增福, 刘镕源, 闫柏琨, 谭琨. 基于波段选择与学习字典的高光谱图像异常探测[J]. 国土资源遥感, 2019, 31(1): 33-41.
Zengfu HOU, Rongyuan LIU, Bokun YAN, Kun TAN. Hyperspectral imagery anomaly detection based on band selection and learning dictionary. Remote Sensing for Land & Resources, 2019, 31(1): 33-41.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.01.05      或      https://www.gtzyyg.com/CN/Y2019/V31/I1/33
Fig.1  算法流程
Fig.2  HyMap数据集
Fig.3  HyMap模拟数据探测结果及ROC曲线
指标 GRX LRX UNRS-MD LRRaLD LPaBS-
LRRaLD
AUC 0.748 35 0.832 27 0.905 54 0.933 74 0.937 00
时间/s 0.538 100.000 165.900 60.300 49.180
Tab.1  HyMap模拟数据AUC与耗时性比较
Fig.4  HYDICE数据集
Fig.5  HYDICE数据集探测结果及ROC曲线
指标 GRX LRX UNRS-MD LRRaLD LPaBS-
LRRaLD
AUC 0.987 23 0.949 27 0.973 19 0.997 27 0.997 52
时间/s 0.178 1 61.440 0 98.380 0 85.370 0 56.140 0
Tab.2  HYDICE数据集AUC与耗时性比较
Fig.6  Hyperion数据集
Fig.7  Hyperion数据集探测结果及ROC曲线
指标 GRX LRX UNRS-MD LRRaLD LPaBS-
LRRaLD
AUC 0.997 82 0.730 53 0.999 62 0.999 60 0.999 83
时间/s 0.331 6 176.50 276.60 110.60 83.58
Tab.3  Hyperion数据集AUC与耗时性比较
Fig.8  Hyspex数据集
Fig.9  Hyspex数据集探测结果及ROC曲线
指标 GRX LRX UNRS-MD LRRaLD LPaBS-
LRRaLD
AUC 0.848 51 0.654 31 0.692 50 0.877 18 0.910 69
时间/s 5.338 4 494 5 500 430.5 109.5
Tab.4  Hyspex数据集AUC与耗时性比较
[1] 钮宇斌, 王斌 . 基于低秩表示和学习字典的高光谱图像异常探测[J]. 红外与毫米波学报, 2016,35(6):731-740.
Niu Y B, Wang B . Hyperspectral anomaly detection using low-rank representation and learned dictionary[J]. Journal of Infrared and Millimeter Waves, 2016,35(6):731-740.
[2] Reed I S, Yu X . Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1990,38(10):1760-1770.
doi: 10.1109/29.60107
[3] Matteoli S, Diani M, Corsini G. A kurtosis-based test to efficiently detect targets placed in close proximity by means of local covariance-based hyperspectral anomaly detectors [C]//3rd Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS).Lisbon:IEEE, 2011: 1-4.
[4] Molero J M, Garzón E M, García I . Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013,6(2):801-814.
doi: 10.1109/JSTARS.2013.2238609
[5] Taitano Y P, Geier B A, Bauer K W . A locally adaptable iterative RX detector[J].Eurasip Journal on Advances in Signal Processing, 2010(1):1-10.
doi: 10.1155/2010/341908
[6] Guo Q, Zhang B, Ran Q , et al. Weighted-RXD and linear filter-based RXD:Improving background statistics estimation for anomaly detection in hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(6):2351-2366.
doi: 10.1109/JSTARS.2014.2302446
[7] Kwon H, Nasrabadi N M . Kernel RX-algorithm:A nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(2):388-397.
doi: 10.1109/TGRS.2004.841487
[8] 张兵 . 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016,20(5):1062-1090.
doi: 10.11834/jrs.20166179
Zhang B . Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016,20(5):1062-1090.
[9] Xu Y, Wu Z, Li J . Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(4):1990-2000.
doi: 10.1109/TGRS.2015.2493201
[10] Li W, Du Q . Collaborative representation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(3):1463-1474.
doi: 10.1109/TGRS.2014.2343955
[11] 赵锐, 杜博, 张良培 . 一种基于核特征空间的鲁棒性高光谱异常探测方法[J]. 光子学报, 2013,42(8):883-890.
Zhao R, Du B, Zhang L P . An anomaly detection method for hyperspectral imagery in kernel feature space based on robust analysis[J]. Acta Photonica Sinica, 2013,42(8):883-890.
[12] 张乐飞, 张良培, 陶大程 . 张量分类算法的遥感影像目标探测[J]. 遥感学报, 2010,14(3):519-533.
Zhang L F, Zhang L P, Tao D C . Tensor-based learning machine for remotely sensed image target detection[J]. Journal of Remote Sensing, 2010,14(3):519-533.
[13] 彭波, 张立福, 张鹏 , 等. Cholesky分解的逐像元实时高光谱异常探测[J]. 遥感学报, 2017,21(5):739-748.
Peng B, Zhang L F, Zhang P , et al. A real-time sample-wise hyperspectral anomaly detection algorithm using Cholesky decomposition[J]. Journal of Remote Sensing, 2017,21(5):739-748.
[14] Huang S Y, Yeh Y R, Eguchi S . Robust kernel principal component analysis[J]. Neural Computation. 2009,21(11):3179-3213.
doi: 10.1162/neco.2009.02-08-706 pmid: 19686071
[15] Chen S Y, Yang S M, Kalpakis K, et al. Low-rank decomposition-based anomaly detection [C]//Proceedings of the SPIE Defense,Security,and Sensing. 2013,8743.
[16] Liu G, Lin Z, Yan S , et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1):171-184.
doi: 10.1109/TPAMI.2012.88 pmid: 22487984
[17] Niu Y, Wang B. A novel hyperspectral anomaly detector based on low-rank representation and learned dictionary [C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Beijing:IEEE, 2016.
[18] Honeine P . Online kernel principal component analysis:A reduced-order model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(9):1814-1826.
doi: 10.1109/TPAMI.2011.270 pmid: 22201059
[19] Wang J, Chang C I . Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(6):1586-1600.
doi: 10.1109/TGRS.2005.863297
[20] Weiland S, Van Belzen F . Singular value decompositions and low rank approximations of tensors[J]. IEEE Transactions on Signal Processing, 2010,58(3):1171-1182.
doi: 10.1109/TSP.2009.2034308
[21] Su M C, Chang H T . Fast self-organizing feature map algorithm[J]. IEEE Transactions on Neural Networks, 2000,11(3):721-733.
doi: 10.1109/72.846743 pmid: 18249799
[22] 哈斯巴干, 马建文, 李启青 , 等. 多波段遥感数据的自组织神经网络降维分类研究[J]. 武汉大学学报(信息科学版), 2004,29(5):461-465.
doi: 10.3321/j.issn:1671-8860.2004.05.019
Hasi B G, Ma J W, Li Q Q , et al. Dimension reduction of self-organized neural network classification for multi-band satellite data[J]. Geomatics and Information Science of Wuhan University. 2004,29(5):461-465.
[23] 杜培军, 王小美, 谭琨 , 等. 利用流形学习进行高光谱遥感影像的降维与特征提取[J]. 武汉大学学报(信息科学版), 2011,36(2):148-152.
Du P J, Wang X M, Tan K , et al. Dimensionality reduction and feature extraction from hyperspectral remote sensing imagery based on manifold learning[J]. Geomatics and Information Science of Wuhan University. 2011,36(2):148-152.
[24] 李恒凯, 吴立新, 李发帅 . 面向土地利用分类的HJ-1 CCD影像最佳分形波段选择[J]. 遥感学报, 2013,17(6):1572-1586.
doi: 10.11834/jrs.20132318
Li H K, Wu L X, Li F S , Optimal fractal band selection on HJ-1 CCD image for land use classification[J]. Journal of Remote Sensing, 2013,17(6):1572-1586.
[25] Lu X Q, Li J L. A remote sensing images feature selection approach based on ant colony algorithm [C]//The 2nd International Conference on Industrial Mechatronics and Automation. Wuhan:IEEE, 2010.
[26] Zhou S, Zhang J P, Su B K. Feature selection and classification based on ant colony algorithm for hyperspectral remote sensing images [C]//The 2nd International Congress on Image and Signal Processing.Tianjin:IEEE, 2009.
[27] 叶志伟, 郑肇葆, 万幼川 , 等. 基于蚁群优化的特征选择新方法[J]. 武汉大学学报(信息科学版), 2007,32(12):1127-1130.
doi: 10.3969/j.issn.1671-8860.2007.12.010
Ye Z W, Zheng Z B, Wan Y C , et al. A novel approach for feature selection based on ant colony optimization algorithm[J]. Geomatics and Information Science of Wuhan University, 2007,32(12):1127-1130.
[28] 周爽 . 蚁群算法在高光谱图像降维和分类中的应用研究[D]哈尔滨:哈尔滨工业大学, 2010.
Zhou S . Research on the Application of Ant Colony Algorithm in the Dimentionality Reduction and Classification for Hyperspectral Image [D]Harbin:Harbin Institute of Technology, 2010.
[29] Tan K, Li E, Du Q, et al. Hyperspectral image classification using band selection and morphological profile [C]//4th Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS).Shanghai:IEEE, 2014.
[30] 张兵, 高连如 . 高光谱图像分类与目标探测[M]. 北京: 科学出版社, 2011.
Zhang B, Gao L R. Hyperspectral Image Classification and Target Detection[M]. Beijing: Science Press, 2011.
[31] Wold S, Esbensen K, Geladi P . Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987,2(1-3):37-52.
doi: 10.1016/0169-7439(87)80084-9
[32] Li W, Du Q. Unsupervised nearest regularized subspace for anomaly detection in hyperspectral imagery [C]//IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Melbourne:IEEE, 2013.
[1] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[2] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[3] 陈洁, 张立福, 张琳珊, 张红明, 童庆禧. 紫外-可见光水质参数在线监测技术研究进展[J]. 自然资源遥感, 2021, 33(4): 1-9.
[4] 高文龙, 张圣微, 林汐, 雒萌, 任照怡. 煤矿开采中SOM的遥感估算和时空动态分析[J]. 自然资源遥感, 2021, 33(4): 235-242.
[5] 刘咏梅, 范鸿建, 盖星华, 刘建红, 王雷. 基于无人机高光谱影像的NDVI估算植被盖度精度分析[J]. 自然资源遥感, 2021, 33(3): 11-17.
[6] 李双权, 马玉凤, 刘勋, 李长春, 杜军. 郑州邙山枣树沟黄土剖面常量元素含量的高光谱反演[J]. 自然资源遥感, 2021, 33(3): 121-129.
[7] 杜程, 李得林, 李根军, 杨雪松. 基于高原盐湖光谱特性下的溶解氧反演应用与探讨[J]. 自然资源遥感, 2021, 33(3): 246-252.
[8] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[9] 臧传凯, 沈芳, 杨正东. 基于无人机高光谱遥感的河湖水环境探测[J]. 自然资源遥感, 2021, 33(3): 45-53.
[10] 王华, 李卫卫, 李志刚, 陈学业, 孙乐. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3): 63-71.
[11] 舒慧勤, 方俊永, 鲁鹏, 顾万发, 王潇, 张晓红, 刘学, 丁兰坡. 基于多源高分辨率数据的遗址空间考古精细识别研究[J]. 国土资源遥感, 2021, 33(2): 162-171.
[12] 肖艳, 辛洪波, 王斌, 崔利, 姜琦刚. 基于小波变换和连续投影算法的黑土有机质含量高光谱估测[J]. 国土资源遥感, 2021, 33(2): 33-39.
[13] 胡新宇, 许章华, 陈文慧, 陈秋霞, 王琳, 刘辉, 刘智才. 基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果[J]. 国土资源遥感, 2021, 33(2): 55-65.
[14] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[15] 吴倩, 姜琦刚, 史鹏飞, 张莉莉. 基于高光谱的土壤碳酸钙含量估算模型研究[J]. 国土资源遥感, 2021, 33(1): 138-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发