Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (2): 11-18    DOI: 10.6046/gtzyyg.2020.02.02
  综述 本期目录 | 过刊浏览 | 高级检索 |
冰崩灾害的界定与类型划分——以青藏高原地区为例
童立强1, 裴丽鑫2, 涂杰楠1(), 郭兆成1, 余江宽1, 范景辉1, 李丹丹2
1.中国自然资源航空物探遥感中心,北京 100083
2.中国地质大学(北京)地球科学与资源学院,北京 100083
A preliminary study of definition and classification of ice avalanche in the Tibetan Plateau region
Liqiang TONG1, Lixin PEI2, Jienan TU1(), Zhaocheng GUO1, Jiangkuan YU1, Jinghui FAN1, Dandan LI2
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. China University of Geoscience (Beijing), School of Earth Sciences and Resources, Beijing 100083, China
全文: PDF(2613 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

青藏高原地区是我国冰崩发生最多的区域。20世纪以来,随着全球气候变暖,该区域多次发生冰崩事件,给当地居民带来了严重的生命财产损失。对该区域冰崩的深入调查和研究对于冰崩灾害的防灾减灾具有重要的实际意义。通过对冰崩灾害的致灾方式、运动过程和影响因素等进行分析和总结,结合高山峡谷地区冰崩灾害的典型特征,对冰崩灾害的定义进行了详细阐述,认为冰崩灾害不应仅包含冰川垮塌形成的直接灾害,还应包含由冰川垮塌引发的链式灾害。在此基础上,将冰崩灾害分为冰崩直接灾害、冰崩-冰湖溃决灾害和冰崩-堵溃链式灾害3种类型,以期建立具有普适性、实用性的分类标准,为青藏高原地区冰崩灾害的深入研究和防灾减灾救灾提供理论基础和科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
童立强
裴丽鑫
涂杰楠
郭兆成
余江宽
范景辉
李丹丹
关键词 冰崩青藏高原冰川遥感灾害    
Abstract

The Tibetan Plateau has the largest ice avalanche in China. Since the 20th Century, with global warming, more and more ice avalanches have occurred in this region, which makes serious loss of life and property of the local residents. Further researches and investigations on ice avalanches have important practical significance for preventing and reducing the disasters. On the basis of the analysis and summary of the disaster mode, the avalanches movements and influence factors, in combination with the typical characteristics of the ice avalanche in alpine valley region, the authors elaborated the definition of the ice avalanche disaster. It is considered that ice avalanche disaster should not only contain the formation of the disasters directly induced by ice avalanche but also include the chain-type disaster induced by ice avalanche. Based on the definition, the authors also divided ice avalanche disaster into three types, i.e., ice avalanche direct hazard, ice avalanche induced glacier lake outburst flood hazard and ice avalanche induced dammed lake outburst flood hazard. The authors want to establish some universal and practical classification criteria which could provide the theoretical and scientific basis for the further study about disaster prevention, mitigation and relief of ice avalanche in the Tibetan Plateau.

Key wordsice avalanche    Tibetan plateau    glacier    remote sensing    hazards
收稿日期: 2019-07-12      出版日期: 2020-06-18
:  P694  
基金资助:中国地质调查项目“全国冰川及荒漠化遥感地质调查”(DD20190515);中国地质调查专项(2019505)
通讯作者: 涂杰楠
作者简介: 童立强(1965-),男,研究员,主要从事环境遥感与地质灾害遥感相关研究工作。 Email: tlqhx@sohu.com。
引用本文:   
童立强, 裴丽鑫, 涂杰楠, 郭兆成, 余江宽, 范景辉, 李丹丹. 冰崩灾害的界定与类型划分——以青藏高原地区为例[J]. 国土资源遥感, 2020, 32(2): 11-18.
Liqiang TONG, Lixin PEI, Jienan TU, Zhaocheng GUO, Jiangkuan YU, Jinghui FAN, Dandan LI. A preliminary study of definition and classification of ice avalanche in the Tibetan Plateau region. Remote Sensing for Land & Resources, 2020, 32(2): 11-18.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.02.02      或      https://www.gtzyyg.com/CN/Y2020/V32/I2/11
Fig.1  西藏阿里地区阿汝错冰崩灾害遥感影像与实地照片
Fig.2  西藏日土县年均气温和降雨量及阿汝错西侧冰川面积变化
Fig.3  然则日阿错溃决后遥感影像
Fig.4  色东普沟2017年10月冰崩灾害前后遥感影像对比
Fig.5  色东普沟发生碎屑流后上游物源区Landsat 8遥感影像对比
[1] 施雅风. 中国第四纪冰川新论[M]. 上海: 上海科学普及出版社, 2011: 8-9
Shi Y F. New understanding of quaternary glaciations in China[M]. Shanghai: Shanghai Science Popularization Press, 2011: 8-9.
[2] 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015,70(1):3-16.
doi: 10.11821/dlxb201501001
Liu S Y, Yao X J, Guo W Q, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015,70(1):3-16.
doi: 10.11821/dlxb201501001
[3] 赵越, 钱方, 朱大岗, 等. 青藏高原第四纪冰川的早期记录及其构造与气候含义[J]. 中国地质, 2009,36(6):1195-1207.
Zhao Y, Qian F, Zhu D G, et al. Early records of Quaternary glaciation in Qinghai-Tibet plateau and their tectonic and climatic implications[J]. Geology in China, 2009,36(6):1195-1207.
[4] 吴右. 青藏高原冰川变化趋势及对策研究[C]//西藏发展论坛, 2018(1):73-75.
Wu Y. Study on the trend and countermeasures of glaciers on the Tibetan Plateau[C]//Tibet:Tibet Development Forum, 2018,(1):73-75
[5] 蒲健辰, 姚檀栋, 王宁练, 等. 近百年来青藏高原冰川的进退变化[J]. 冰川冻土, 2004,26(5):517-522.
Pu J C, Yao T D, Wang N L, et al. Fluctuations of the glaciers on the Qinghai-Tibetan Plateau during the past century[J]. Journal of Glaciology and Geocryology, 2004,26(5):517-522.
[6] 沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候变化的响应(Ⅱ):灾害效应[J]. 冰川冻土, 2013,35(6):1355-1370.
doi: 10.7522/j.issn.1000-0240.2013.0151
Shen Y P, Su H C, Wang G Y, et al. The responses of glaciers and snow cover to climate change in xinjiang(II):Hazards Effects[J]. Journal of Glaciology and Geocryology, 2013,35(6):1355-1370.
doi: 10.7522/j.issn.1000-0240.2013.0151
[7] 胡文涛, 姚檀栋, 余武生, 等. 高亚洲地区冰崩灾害的研究进展[J]. 冰川冻土, 2018,40(6), 1141-1152.
Hu W T, Yao T D, Yu W S, et al. Advances in the study of glacier avalanches in High Asia[J]. Journal of Glaciology and Geocryology, 2018,40(6):1141-1152.
[8] 黄田进. 青藏高原冰川厚度与湖泊水位的时空变化研究[D].北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
Huang T J. Spatial-temporal changes of glacier thickness and lake level on the Qinghai-Tibetan Plateau[D].Beijing:University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth Chinese Academy Sciences), 2017.
[9] Osczevski R J. The 1849 Balvullich Ice Fall[DB/OL]. Skeptical Inquirer,2018,42(3).https://skepticalinquirer.org/2018/05/the-1849-balvullich-ice-fall/
[10] Pasquier L D.The fall of the Altels glacier[J].Nature, 1896,53(1371):317-317.
[11] Pinchak A C. Avalanche activity on the Vaughan Lewis Icefall[J]. Journal of Glaciology, 1968,7(51):441-448.
[12] Röthlisberger H. Ice avalanches[J]. Journal of Glaciology, 1977,19(81):669-671.
[13] Margreth S, Fun M. Hazard mapping for ice and combined snow/ice avalanches-two case studies from the Swiss and Italian alps[J]. Cold Regions Science & Technology, 1999,30(1-3):159-173.
[14] Salzmann N, K.B A, Huggel C,et al.Assessment of the hazard potential of ice avalanches using remote sensing and GIS-modelling[J]. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 2004,58(2):74-84.
[15] Jürg Alean. Ice avalanche activity and mass balance of a high-altitude hanging glacier in the Swiss alps[J]. Annals of Glaciology, 1985,6:248-249.
[16] Woerd J V, Owen L A, Tapponnier P, et al. Giant, M8 earthquake-triggered ice avalanches in the eastern Kunlun Shan,northern Tibet:Characteristics[J]. nature and dynamics.Geological Society of America Bulletin, 2004,116(3-4):394-406.
[17] Kotlyakov V M, Rototaeva O V, Nosenko G A. The September 2002 Kolka glacier catastrophe in north Ossetia,Russian federation:Evidence and analysis the surging Kolka glacier[J]. Mountain Research & Development, 2014,24:78-83.
[18] Mahboob M A, Iqbal J, Atif I. Modeling and simulation of glacier avalanche:A case study of gayari sector glaciers hazards assessment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(11):5824-5834.
[19] Coe J A, Bessette-Kirton E K, Geertsema M.Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve,Alaska detected from 1984 to 2016 Landsat imagery[J]. Landslides, 2018,15(3):393-407.
doi: 10.1007/s10346-017-0879-7
[20] Andreas K, Leinss S, Gilbert A, et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 2018,11(2):114-120.
[21] Margreth S, Faillettaz J, Funk M, et al. Safety concept for hazards caused by ice avalanches from the Whymper hanging glacier in the Mont Blanc Massif[J]. Cold Regions Science & Technology, 2011,69(2):194-201.
[22] 秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学辞典[M]. 北京: 中国气象出版社, 2014.
Qin D H, Yao T D, Ding Y J, et al. Glossary of cryospheric science[M]. Beijing: China Meteorological Press, 2014.
[23] 王世金, 秦大河, 任贾文. 冰湖溃决灾害风险研究进展及其展望[J]. 水科学进展, 2012,23(5):735-742.
Wang S J, Qin D H, Ren J W. Progress and prospect in risk assessment of hazards from glacier lake outbursts[J]. Advances in Water Science, 2012,23(05):735-742.
[24] 姚晓军, 刘时银, 孙美平, 等. 20世纪以来西藏冰湖溃决灾害事件梳理[J].自然资源学报, 2014(8):1377-1390.
Yao X J, Liu S Y, Sun M P, et al. Study on the glacial lake outburst flood events in Tibet since the 20th century[J]. Journal of Natural Resources, 2014,29(08):1377-1390.
[25] 刘晶晶, 唐川, 程尊兰, 等. 气温对西藏冰湖溃决事件的影响[J]. 吉林大学学报(地球科学版), 2011,41(4):1121-1125.
Liu J J, Tang C, Cheng Z L, et al. Impact of temperature on glacier-lake outbursts in Tibet[J]. Journal of Jilin University(Earth Science Edition), 2011,41(4):1121-1129.
[26] 孙美平, 刘时银, 姚晓军, 等. 2013年西藏嘉黎县“7.5”冰湖溃决洪水成因及潜在危害[J]. 冰川冻土, 2014,36(1):158-165.
Sun M P, Liu S Y, Yao X J, et al. The cause and potential hazard of glacial lake outburst flood occurred on July 5,2013 in Jiali County,Tibet[J]. Journal of Glaciology and Geocryology, 2014,36(1):158-165.
[27] 童立强, 聂洪峰, 李建存, 等. 喜马拉雅山地区大型泥石流遥感调查与发育特征研究[J]. 国土资源遥感, 2013,25(4):104-112.doi: 10.6046/gtzyyg.2013.04.17.
Tong L Q, Nie H F, Li J C, et al. Survey of large-scale debris flow and study of its development characteristics using remote sensing technology in the Himalayas[J]. Remote Sensing for Land and Resources, 2013,25(4):104-112.doi: 10.6046/gtzyyg.2013.04.17.
[28] 童立强, 涂杰楠, 裴丽鑫, 等. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨[J]. 工程地质学报, 2018,26(6):147-156.
Tong L Q, Tu J N, Pei L X, et al. Preliminary discussion of the frequently debris flow events in Sedongpu basin at Gyalaperi Peak,Yarlung Zangbo River[J]. Journal of Engineering Geology, 2018,26(6):1552-1561.
[29] 刘传正, 吕杰堂, 童立强, 等. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 2019,46(2):219-234.
Liu C Z, Lv J T, Tong L Q, et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China, 2019,46(2):219-234.
[30] Siang water not fit for drinking:Arunachal CM[EB/OL].(2017-12-3). https://timesofindia.indiatimes.com/city/guwahati/siang-water-not-fit-for-drinking-arunachal-cm/articleshow/61909755.cms.
[31] India Says Chinese Construction on River Dirtying Water[EB/OL].(2017-12-12). http://www.nydailynews.com/newswires/news/world/india-chinese-construction-river-dirtying-water-article-1.3693171.
[32] 李震, 陈宁生, 张建平, 等. 波曲流域冰湖及其溃决灾害链特征分析[J]. 水文地质工程地质, 2014,41(4):143-148.
Li Z, Chen N S, Zhang J P, et al. Characteristics of the disaster chain of outburst and glacier lakes in the Boiqu River basin[J]. Hydrogeology & Engineering Geology, 2014,41(4):143-148.
[33] 巴桑次仁, 邓桂英, 巴桑央金, 等. 西藏地震应急救援体系建设的探索[J]. 高原地震, 2009,21(2):58-61.
Basang C R, Deng G Y, Basang Y J. Disscussion on the Earthquake Emergency System in Tibet Autonomous Region[J]. Plateau Earthquake Research, 2009,21(02):58-61.
[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[3] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[4] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[5] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[6] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[7] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[8] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[9] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[10] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[11] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[12] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[13] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[14] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[15] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发